General Certificate of Education June 2004 Advanced Level Examination

MATHEMATICS (SPECIFICATION A) Unit Pure 3

MAP3

Wednesday 23 June 2004 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 20 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MAP3.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- Tie loosely any additional sheets you have used to the back of your answer book before handing it to the invigilator.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P68888/0604/MAP3 6/6/ MAP3

Answer all questions.

1 A curve is given by the parametric equations

$$x = 2t - 1, \quad y = \frac{1}{2t}.$$

- (a) Find $\frac{dy}{dx}$ in terms of t. (2 marks)
- (b) Find the equation of the normal to the curve at the point where t = 1. (4 marks)
- 2 (a) Obtain the binomial expansion of $(1+x)^{\frac{1}{3}}$ as far as the term in x^2 . (2 marks)
 - (b) Hence, or otherwise, find the series expansion of $(8 + 4x)^{\frac{1}{3}}$ as far as the term in x^2 .
- 3 (a) Express $\frac{30}{(x+4)(7-2x)}$ in the form $\frac{A}{x+4} + \frac{B}{7-2x}$. (3 marks)
 - (b) Hence find

$$\int_0^3 \frac{30}{(x+4)(7-2x)} \, \mathrm{d}x,$$

giving your answer in the form $p \ln q$, where p and q are rational numbers. (5 marks)

- 4 A curve is given by the equation $9(y+2)^2 = 5 + 4(x-1)^2$.
 - (a) Find the coordinates of the two points on the curve where x = 2. (3 marks)
 - (b) Find the gradient of the curve at each of these points. (5 marks)

5 In a timing device, sand falls through a small hole to form a conical heap. As the cone forms, the height, h cm, remains equal to the base radius, r cm, of the heap.

- (a) The volume of the sand after t minutes is $V \text{ cm}^3$. Explain why $V = \frac{1}{3}\pi h^3$. (1 mark)
- (b) The sand falls through the hole at a rate of 3 cm³ per minute. Find the rate at which the height of the heap is increasing at the instant when h = 2. Give your answer to two significant figures. (3 marks)
- **6** The function f is given by $f(x) = \sin(2x + \frac{\pi}{6})$.
 - (a) (i) Find f'(x) and f''(x). (3 marks)
 - (ii) Hence, using the Maclaurin series, show that, for small values of x,

$$f(x) \approx \frac{1}{2} + \sqrt{3}x - x^2. \tag{2 marks}$$

(b) Show that, for small values of x,

$$(1 - \cos x)\sin\left(2x + \frac{\pi}{6}\right) \approx kx^2,$$

where the value of the constant k is to be found.

(3 marks)

TURN OVER FOR THE NEXT QUESTION

7 Initially there are 2000 fish in a lake. The number of fish, x, at time t months later is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x(1 - kt),$$

where k is a constant.

(a) Solve this differential equation to show that

$$x = 2000e^{t - \frac{1}{2}kt^2}. (6 \text{ marks})$$

- (b) After 12 months the number of fish is again 2000. Find the value of k. (3 marks)
- 8 (a) Find the vector equation of the line l_1 , which passes through the points A(3, -1, 2) and B(2, 0, 2).
 - (b) The line l_2 has vector equation $\mathbf{r} = \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

Show that the lines l_1 and l_2 intersect and find the coordinates of their point of intersection. (4 marks)

- (c) Show that the point C(9, 1, -6) lies on the line l_2 . (2 marks)
- (d) Find the coordinates of the point D on l_1 such that CD is perpendicular to l_1 . (4 marks)

END OF QUESTIONS