GCE 2004 June Series

Mark Scheme

Mathematics A *MAP3*

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors
COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

Dr Michael Cresswell Director General

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Mark Scheme Advanced - Mathematics A

Key to Mark Scheme

m mark is dependent on one or more M marks and is for method A mark is dependent on M or m marks and is for accuracy B mark is independent of M or m marks and is for method and accuracy E mark is for explanation or ft or F follow through from previous incorrect result for marks and is for marks and is for method and accuracy for ft or F follow through from previous incorrect result for follow	M m	ark is for	method
B. mark is independent of M or m marks and is for method and accuracy E. mark is for explanation ✓ or ft or F. follow through from previous incorrect result CAO. correct answer only AWFW anything which falls within AWRT anything which rounds to AG special case OE special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach C candidate SF significant figure(s)	m m	ark is dependent on one or more M marks and is for	method
E. mark is for explanation √ or ft or F. follow through from previous incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach C candidate SF significant figure(s)	A m	ark is dependent on M or m marks and is for	accuracy
✓ or ft or F follow through from previous incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)	B m	ark is independent of M or m marks and is formet	thod and accuracy
incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)	E m	ark is for	explanation
CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)	\checkmark or ft or F	follow throu	igh from previous
AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)			incorrect result
AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)	CAO	co	orrect answer only
AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)	AWFW	anything v	which falls within
SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)	AWRT	anything	g which rounds to
OEor equivalentA2,1 2 or 1 (or 0) accuracy marks x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidateSFsignificant figure(s)	AG		answer given
A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)			
A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate SF significant figure(s)	OE		or equivalent
NMS			
PI	-x EE	deduct x ma	arks for each error
SCA substantially correct approach c candidate SF significant figure(s)	NMS		no method shown
SCA substantially correct approach c candidate SF significant figure(s)	PI		possibly implied
SFsignificant figure(s)			
	c		candidate
	SF	si}	gnificant figure(s)
		·	• • • • • • • • • • • • • • • • • • • •

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
	deducted x marks for mis-read
	ignored subsequent working
	given benefit of doubt
	work replaced by candidate
	formulae booklet

Application of Mark Scheme

No method shown:

Crossed out work

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

mark both/all fully and award the mean mark rounded down award credit for the complete solution only

do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method

award method and accuracy marks as appropriate

MAP3

MAP3				
Q	Solution	Marks	Total	Comments
1(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{-1}{2t^2} \frac{1}{2}$	M1		dy dx dy dt
	$\frac{dx}{dt} = \frac{dt}{dt} \frac{dx}{dx} = \frac{2t^2}{2} \frac{2}{2}$			attempt $\frac{dy}{dt} & \frac{dx}{dt}$; use $\frac{dy}{dt} \cdot \frac{dt}{dx}$
				$\left(\frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{M0}\right)$
				$\left(dt dt \right)$
		A1	2	Use chain rule (ISW at this stage)
(b)	$t=1$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{4}$	B1F		ft $t = 1$ subst in their $\frac{dy}{dx}$
	$\mathrm{d}x$ 4			dx
	11	DIE		Follow on gradient $\frac{-1}{}$
	gradient of normal = 4	B1F		Follow on gradient $\frac{-1}{\text{their} - \frac{1}{4}}$
	1			, ·
	$y = 4x + c$ $t = 1$ $x = 1$ $y = \frac{1}{2}$	M1		Use $(1, \frac{1}{2})$ and gradient
	_			1
				$\frac{1}{2}$ = their 4 + c; $\frac{y - \frac{1}{2}}{x - 1}$ = their 4
				$\frac{1}{2}$ - then 4+c, $\frac{1}{x-1}$ - then 4
	$y = 4x - \frac{7}{2}$	A1F	4	OE: F on gradient; $y = (\text{their } m_N) x + c$
	<u> </u>	1111	•	m_N
	Special Cases			
	Eliminate t in part (a)			
	$y = \frac{1}{x+1}$; $\frac{dy}{dx} = \frac{\pm 1}{(x+1)^2}$ M1			
	$=\frac{-1}{(2t)^2}$ A1			Tangent instead of normal
	$m_T = -\frac{1}{4}$ B1F			$m_T = \frac{1}{4}$
	1 1 3			1 1 1
	$\frac{1}{2} = -\frac{1}{4} \times 1 + c; \ c = \frac{3}{4}$ M1			$\frac{1}{2} = \frac{1}{4} \times 1 + c; \ c = \frac{1}{4}$
	$y = -\frac{1}{4}x + \frac{3}{4}$ A1F(5/6)			$y = \frac{1}{4}x + \frac{1}{4} \tag{4/6}$
	Common error			
	$y = \frac{1}{2t} = 2t^{-1}$; $\frac{dy}{dt} = 2t^{-2}$; $\frac{dx}{dt} = 2$			NB late substitution for <i>t</i> (could be retrospective) B1F B1F
	$\frac{dy}{dr} = \frac{2t^{-2}}{2} = -t^{-2} (\text{or } t^{-2}) \text{M1A0}$			but if <i>t</i> 's in final answer & no subst'n: either 0/4
	$m_N = -1, +1$ B1F			or 1/4 if (1,1/2) and gradient
	$m_T = +1, -1$ B0F (no ft for just			used in linear equation
	changing sign)			used in finear equation
	$x = 1, y = \frac{1}{2}, \frac{1}{2} = -1 + c \text{ or } \frac{1}{2} = 1 + c$			
	M1			

Mark Scheme Advanced – Mathematics A

Q	Solution	Marks	Total	Comments
1 cont	Special Cases (cont)			
	Ins in $\frac{\mathrm{d}y}{\mathrm{d}x}$			
	$x = 2t - 1$ $y = \frac{1}{2t}$			
	21			dr
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\ln t}{2}$			$\frac{\mathrm{d}x}{\mathrm{d}t} = \ln 2t$
	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\ln t}{2} \cdot \frac{1}{2} = \frac{\ln t}{4} $ M1A0			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\ln 2t}{2}$
	dv			
	$t = 1, \frac{\mathrm{d}y}{\mathrm{d}x} = 0$ B1F			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\ln 2}{2}$
	$m_T = 0, \qquad m_N = \infty$			
	,, N			$m_T = \frac{\ln 2}{2} , m_N = \frac{-2}{\ln 2} \text{B1F1F}$
	(normal is) x = 1 (3/4)			$\frac{1}{2} = \frac{-2}{\ln 2} + c $ M1
				$y = \frac{-2}{\ln 2}x + \frac{1}{2} + \frac{2}{\ln 2}$ A1F
	(normal is) 2			ln 2 2 ln 2
2()	Total		6	
2(a)	$(1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x + \frac{1}{3}\left(\frac{1}{3} - 1\right)\frac{x^2}{2}$	M1		
	3 3(3)2	1,11		
	$=1+\frac{1}{3}x-\frac{1}{9}x^2$	A1	2	
	3 9			
	$\frac{1}{2}$			
(b)	$(8+4x)^{\frac{1}{3}} = \left(8\left(1+\frac{1}{2}x\right)\right)^{\frac{1}{3}}$	B1		
	$= 2\left(1 + \frac{1}{3}\frac{1}{2}x - \frac{1}{9}\left(\frac{1}{2}x\right)^2 + \dots\right)$	M1		M1 for expression inside bracket
	$=2\left(1+\frac{1}{3}\frac{1}{2}x-\frac{1}{9}\left(\frac{1}{2}x\right)+\right)$	1411		$\int SC \cdot (8 + 4x)^{\frac{1}{3}}$
	,			$\frac{1}{2} \cdot 1 - \frac{2}{3} \cdot 1 \cdot (2) - \frac{5}{3} \cdot (4x)^2$
				SC: $(8 + 4x)^{\frac{1}{3}}$ = $8^{\frac{1}{3}} + \frac{1}{3}8^{-\frac{2}{3}} \cdot 4x + \frac{1}{3}\left(-\frac{2}{3}\right)8^{-\frac{5}{3}} \cdot \frac{(4x)^2}{2}$
				$ \begin{bmatrix} M1 & 5 & 3 & 5 & 5 \\ M1 & 5 & 8 & 3 & 8 & 3 \end{bmatrix} $
				$1 \text{ M1 for } 8^{\frac{1}{3}} 8^{-\frac{2}{3}}, 8^{-\frac{3}{3}}$
				(4.)2.7
				M1 for $4x, \frac{(4x)^2}{2}$
				$=2+\frac{1}{3}x-\frac{1}{18}x^2$
				3 18
	$=2+\frac{1}{3}x-\frac{1}{18}x^2+$	A1	3	Accept recurring decimals or equiv
	3 10			fractions
	Total		5	

Q	Solution	Marks	Total	Comments
3(a)		M1	10001	PFs: any valid method
	x = -4 30 = 15A $A = 2$	M1		for substituting values of x to find A , B
	$x = \frac{7}{2} \qquad 30 = \frac{15}{2}B B = 4$	A1	3	
(b)	$\int_{0}^{3} \frac{2}{x+4} + \frac{4}{7-2x} dx$ $= \left[2\ln(x+4) - 2\ln(7-2x) \right]_{0}^{3}$			
	$= [2 \ln(x+4) - 2 \ln(7-2x)]_0^3$	M1A1F		M1 for $\left[c \ln(x+4) + d \ln(7-2x)\right]$ Ignore limits here
	$= 2 \ln 7 - 2 \ln 1 - 2 \ln 4 + 2 \ln 7$	m1A1F		m1 for $(c\ln 7 + d\ln 1) - (c\ln 4 + d\ln 7)$ m1 Use limits right way round. A1 All correct and with $\ln 1 = 0$. A1F for $c\ln 7 - d\ln 7 - c\ln 4$
		A1	5	or $-2 \ln \frac{4}{49}$ or $-4 \ln \frac{2}{7}$
				or $-1 \ln \frac{16}{2401}$ or $1 \ln \frac{2401}{16}$
	Total		8	

Mark Scheme Advanced – Mathematics A

MAP3 (Con Q	Solution	Marks	Total	Comments
4(a)	$9(y+2)^2 = 5 + 4(x-1)^2$			
	$x = 2 9(y+2)^2 = 5+4$	M1		Substitute $x = 2$
				$9(y+2)^2 = 5 + 4 \times 3^2$ i.e. $(x+1)^2$
	$y+2=\pm 1$ $y=-1,-3$	m1A1	3	Find two y values. Coords not required
				$(y+2)^2 = \frac{41}{9}, y+2 = \pm \frac{\sqrt{41}}{3}$ M1A0
(b)	$\frac{d}{dx}(9(y+2)^2) = \frac{d}{dx}(5+4(x-1)^2)$	M1		Attempt implicit differentiation with
				use of chain rule: $\frac{dy}{dy}$ attached to y
				term, not x term
	$18 (y+2) \frac{dy}{dx} = 0 + 8 (x-1)$	A1A1		
	(2,-1) $(2,-3)$	m1		Use $x = 2$ and candidate's y values
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{9} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4}{9}$	A1	5	OE; CAO
				Alternative: explicit differentiation
				$y = \sqrt{\frac{5 + 4(x - 1)^2}{9}} - 2$
				$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left(\frac{5 + 4(x - 1)^2}{9} \right)^{-\frac{1}{2}} \frac{8}{9} (x - 1)$
				(M1A2 fully correct; M1A1 if 9 of $\frac{8}{9}$
				missing dv 1 8 4
				$x = 2$: $\frac{dy}{dx} = \pm \frac{1}{2} (1) \frac{8}{9} = \pm \frac{4}{9}$
	Total		8	
5(a)	$V = \frac{1}{3}\pi r^2 h \text{ and } r = h \text{ (both)}$			
	$\Rightarrow V = \frac{1}{3}\pi h^3$	B1	1	AG
(b)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 3$	B1		
	$3 = \pi h^2 \frac{\mathrm{d}h}{\mathrm{d}t}$	M1		Use $\frac{dV}{dh}$ in chain rule
	$h = 2 \qquad \frac{\mathrm{d}h}{\mathrm{d}t} = 0.24 \; (\mathrm{cm/min})$	A1	3	CAO; Condone omission of units unless
	Total		4	candidate converts to some other units.
	1 Otai		4	

Q Q	Solution	Marks	Total	Comments
6(a)(i)	$f(x) = \sin\left(2x + \frac{\pi}{6}\right)$			Alternative $f(x) = \sin\left(2x + \frac{\pi}{6}\right)$
	$f'(x) = 2\cos\left(2x + \frac{\pi}{6}\right)$	M1A1		$\left \frac{\text{M1 for}}{\cos\left(2x + \frac{\pi}{6}\right)} \right = \sin 2x \cos \frac{\pi}{6} + \cos 2x \sin \frac{\pi}{6}$
	$f''(x) = -4\sin\left(2x + \frac{\pi}{6}\right)$	A1	3	$=\frac{\sqrt{3}}{2}\sin 2x + \frac{1}{2}\cos 2x$
				$f'(x) = \sqrt{3}\cos 2x - \sin 2x M1A1$
				$f''(x) = 2\sqrt{3} \sin 2x - 2\cos 2x$ A1
				$(\cos \frac{\pi}{6} \& \sin \frac{\pi}{6} \text{ terms need not})$
				be simplified) If $f(x) = \sin\left(2x + \frac{\pi}{6}\right)$ expanded incorrectly
				$ 111(x) = \sin \left(2x + \frac{1}{6} \right) expanded incorrectly $
				i.e. $= \sin 2x + \sin \frac{\pi}{6}$
				$f'(x) = 2\cos 2x$
				$f''(x) = -4\sin 2x$, must be fully correct for M1A0A0
				If $f'(x) = \cos\left(2x + \frac{\pi}{6}\right)$ M1A0
				$f''(x) = -2\sin\left(2x + \frac{\pi}{6}\right) $ A1F
				$x = 0$, $f(0) = \frac{1}{2}$, $f'(0) = \frac{\sqrt{3}}{2}$, $f'(0) = -\frac{1}{2}$
(ii)	r^2			M1A0 for part (ii)
(11)	$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2}$			
	$f(x) = \frac{1}{2} + 2\frac{\sqrt{3}}{2}x - 4\frac{1}{2}\frac{x^2}{2}$	M1		Use $x = 0$ in Maclaurin series, P.I.
	$f(x) \approx \frac{1}{2} + \sqrt{3}x - x^2$	A1	2	AG convincingly obtained: show how x^2 term is obtained
(b)	$\left(1 - \left(1 - \frac{x^2}{2}\right)\right)$	B1		Use of $\cos x = 1 - \frac{x^2}{2}$; may be derived from
	$(1, \sqrt{2},, 2)x^2$ 1 2			first principles
	$\left(\frac{1}{2} + \sqrt{3}x - x^2\right) \frac{x^2}{2} \approx \frac{1}{4}x^2$	M1A1	3	Either $k = \frac{1}{4}$ explicity stated or expression in
	$k = \frac{1}{4}$			question written with k replaced by $\frac{1}{4}$
	Total		8	

Mark Scheme Advanced – Mathematics A

MAP3 (Con	Solution	Marks	Total	Comments
Q	_	IVIATKS	1 Otal	Comments
7(a)	\mathbf{x}	M1		Attempt to separate and integrate. M0 if mixture of <i>x</i> 's and <i>t</i> 's
	$\ln x = t - \frac{1}{2}kt^2 + c$	A1A1		c required
	$x = e^{t - \frac{1}{2}kt^2 + c}$	M1		Alternatives
	$x = 2000, t = 0 \implies A = 2000$	M1		(1) $c = \ln 2000$ M1
	$x = Ae^{t - \frac{1}{2}kt^2}$, where $A = e^c$	A1	6	$\ln \frac{x}{2000} = t - \frac{1}{2}kt^2$
	(if A suddenly appears without justification: A0)			$\frac{x}{2000} = e^{t - \frac{1}{2}kt^2}$ M1
				$x = 2000 e^{t - \frac{1}{2}kt^2}$ A1
				(2) $c = \ln 2000$ M1
				$x = e^{t - \frac{1}{2}kt^2} + \ln 2000 \qquad M1$
				$= e^{t - \frac{1}{2}kt^2} e^{\ln 2000}$
				$= 2000 e^{t-\frac{1}{2}kt^2} $ A1
				$(3) \int_{0}^{\infty} (1-kt)dt \qquad M1$
				$[\ln x]_{2000}^{x} = \left[t - \frac{1}{2}kt^{2}\right]_{0}^{t}$ A1 for ln x A1 for $t - \frac{1}{2}kt^{2}$ A1 For both sets of limits
				$\ln x - \ln 2000 = t - \frac{1}{2}kt^2 \qquad M1$
				$ \ln\left(\frac{x}{2000}\right) = t - \frac{1}{2}kt^2 \qquad \text{A1} $
				$x = 2000 e^{t - \frac{1}{2}kt^2} AG$ AG convincingly obtained
(b)	Substituting $t = 12$ $x = 2000$	B1		No simplification required
	$12 - \frac{1}{2}k(12)^2 = \ln 1$	M1		For taking ln
	$k=\frac{1}{6}$	A1	3	OE
	Total		9	

MAP3 (Con Q	Solution	Marks	Total	Comments
8(a)	$\overrightarrow{AB} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$	M1		
	l_1 has equation $\mathbf{r} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$.	A1	2	OE eg $\mathbf{r} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$
(b)	$3 - \lambda = 4 + \mu$ $-1 + \lambda = 1$ $2 = -1 - \mu$	M1		Set up at least 2 equations and attempt to solve.
	$\lambda = 2$ $\mu = -3$ Confirm in third equation	A1 A1		Alternative: showing (1, 1, 2) lies on
	Intersect at (1, 1, 2)	A1	4	both lines A2
(c)	$\begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \\ -6 \end{bmatrix}.$	M1		
	is satisfied by $\mu = 5$	A1	2	
(d)	$\overrightarrow{CD} \bullet \overrightarrow{AB} = 0$	B1		$ \overrightarrow{CD} \cdot \begin{bmatrix} -1\\1\\0 \end{bmatrix} = 0 \text{ or } \overrightarrow{CD} \cdot \begin{bmatrix} 1\\-1\\0 \end{bmatrix} = 0 $
	$ \left(\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 9 \\ 1 \\ -6 \end{bmatrix} \right) \bullet \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = 0 $	M1		not $\overrightarrow{CD} \cdot l_1$, unless corrected later
	$(-6-\lambda)(-1)+(-2+\lambda)=0$	m1		
	$(-6-\lambda)(-1)+(-2+\lambda)=0$ $\lambda = -2$ D is $(5, -3, 2)$	A1	4	Answer may be in vector form
				Alternative to part(d) $ \begin{bmatrix} x-9 \\ y-1 \\ z+6 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = 0 \qquad B1 $ $ \Rightarrow x-y=8 \qquad M1 $ $ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \text{their } \mathbf{r} \text{ from (a)} \qquad M1 $ $ (5, -3, 2) \qquad A1 $
	Total		12	
	Total		60	