General Certificate of Education January 2004 Advanced Level Examination

MATHEMATICS (SPECIFICATION A) Unit Pure 4

MAP4

Monday 19 January 2004 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 20 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MAP4.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- Tie loosely any additional sheets you have used to the back of your answer book before handing it to the invigilator.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- Sheets of graph paper are available on request.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P65215/0104/MAP4 6/6/6 MAP4

Answer all questions.

1 (a) Express in the form a + ib:

(i)
$$(3+i)^2$$
; (1 mark)

(ii)
$$(2+4i)(3+i)$$
. (1 mark)

(b) The quadratic equation

$$z^2 - (2+4i)z + 8i - 6 = 0$$

has roots z_1 and z_2 .

- (i) Verify that $z_1 = 3 + i$ is a root of the equation. (2 marks)
- (ii) By considering the coefficients of the quadratic, write down the sum of its roots.

 (1 mark)
- (iii) Explain why z_1^* , the complex conjugate of z_1 , is **not** a root of the quadratic equation. (1 mark)
- (iv) Find the other root, z_2 , in the form a + ib. (1 mark)
- (c) (i) Label the points representing the complex numbers z_1 and z_2 on an Argand diagram. (1 mark)
 - (ii) Show that $|z_1| = |z_2|$. (2 marks)
 - (iii) Find the value of arg $\left(\frac{z_2}{z_1}\right)$. (3 marks)

2 Use de Moivre's Theorem to show that

$$\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^7 \left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)^5 = -i.$$
 (6 marks)

3 The function f is given by

$$f(n) = n^3 + (n+1)^3 + (n+2)^3$$
.

- (a) Simplify, as far as possible, f(n+1) f(n). (4 marks)
- (b) Prove by induction that the sum of the cubes of three consecutive positive integers is divisible by 9. (5 marks)
- 4 (a) Given that

$$y = \sinh^{-1} x,$$

show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1+x^2}}.$$
 (3 marks)

- (b) The curves C_1 and C_2 have equations $y = \sinh x$ and $y = \sinh^{-1} x$ respectively.
 - (i) Find the gradient of C_1 and the gradient of C_2 at x = 0. (2 marks)
 - (ii) Explain why, for all $x \neq 0$, the gradient of C_1 is greater than 1 and the gradient of C_2 is less than 1. (3 marks)
 - (iii) Sketch on the same axes the graphs of C_1 and C_2 . (2 marks)
- 5 A curve C has equation

$$y = \ln(1 - x^2), \quad 0 \le x < 1.$$

(a) Show that

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \left(\frac{1+x^2}{1-x^2}\right)^2. \tag{6 marks}$$

(b) Use the result

$$\frac{1+x^2}{1-x^2} = \frac{2}{1-x^2} - 1$$

to show that the length of the arc of C between the points where x = 0 and x = p is

$$2\tanh^{-1}p - p. (4 marks)$$

- **6** (a) (i) Verify that $z = 2e^{\frac{1}{4}\pi i}$ is a root of the equation $z^4 = -16$. (1 mark)
 - (ii) Find the other three roots of this equation, giving each root in the form $re^{i\theta}$, where r is real and $-\pi < \theta \le \pi$.
 - (iii) Illustrate the four roots of the equation by points on an Argand diagram. (2 marks)
 - (b) (i) Show that

$$(z - 2e^{\frac{1}{4}\pi i})(z - 2e^{-\frac{1}{4}\pi i}) = z^2 - 2\sqrt{2}z + 4.$$
 (3 marks)

(ii) Express $z^4 + 16$ as the product of two quadratic factors with real coefficients.

(3 marks)

END OF QUESTIONS