

A-LEVEL MATHEMATICS 7357/1

Paper 1

Mark scheme

June 2018

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Mark scheme instructions to examiners

General

The mark scheme for each question shows:

- · the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Key to mark types

M	mark is for method
R	mark is for reasoning
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
F	follow through from previous incorrect result

Key to mark scheme abbreviations

CAO	correct answer only
CSO	correct solution only
ft	follow through from previous incorrect result
'their'	Indicates that credit can be given from previous incorrect result
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
sf	significant figure(s)
dp	decimal place(s)

AS/A-level Maths/Further Maths assessment objectives

Α	0	Description
	AO1.1a	Select routine procedures
AO1	AO1.1b	Correctly carry out routine procedures
	AO1.2	Accurately recall facts, terminology and definitions
	AO2.1	Construct rigorous mathematical arguments (including proofs)
	AO2.2a	Make deductions
AO2	AO2.2b	Make inferences
	AO2.3	Assess the validity of mathematical arguments
	AO2.4	Explain their reasoning
	AO2.5	Use mathematical language and notation correctly
	AO3.1a	Translate problems in mathematical contexts into mathematical processes
	AO3.1b	Translate problems in non-mathematical contexts into mathematical processes
	AO3.2a	Interpret solutions to problems in their original context
	AO3.2b	Where appropriate, evaluate the accuracy and limitations of solutions to problems
AO3	AO3.3	Translate situations in context into mathematical models
	AO3.4	Use mathematical models
	AO3.5a	Evaluate the outcomes of modelling in context
	AO3.5b	Recognise the limitations of models
	AO3.5c	Where appropriate, explain how to refine models

Examiners should consistently apply the following general marking principles

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to students showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the student to state or write down a result, no method need be shown for full marks

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, mark positively, awarding marks for all of the student's best attempts. Withhold marks for final accuracy and conclusions if there are conflicting complete answers or when an incorrect solution (or part thereof) is referred to in the final answer.

Q1	Marking Instructions	AO	Marks	Typical Solution
1	Circles correct answer	AO1.1b	B1	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{x^3}$
	Total		1	

Q2	Marking Instructions	AO	Marks	Typical Solution
2	Circles correct answer	AO1.1b	B1	$y = 5 \times 5^x$
	Total		1	

Q	Marking Instructions	AO	Marks	Typical Solution
3	Circles correct answer	AO1.1b	B1	4
	Total		1	

Q	Marking Instructions	AO	Marks	Typical Solution
4	Takes logs of an equation. Must be correct use of logs.	AO1.1a	M1	$y = e^{x-4}$
	Obtains correct inverse function in any correct form	AO1.1b	A1	$ \ln y = x - 4 $ $ 4 + \ln y = x $
	Deduces correct domain	AO2.2a	B1	$f^{-1}(x) = 4 + \ln x, x > 0$
	Total		3	

Q	Marking Instructions	AO	Marks	Typical Solution
5(a)	Differentiates 2^t or 2^{-t} to obtain	AO1.1a	M1	- Jprom Cordinorn
	$\pm A \ln 2 \times 2^{\pm t}$			
	dv (AO1.1b	A1	dv
	Obtains $\frac{dy}{dt} = (\pm A \ln 2) 2^t$ and			$\frac{dy}{dt} = (3\ln 2)2^t$
	a.			dr
	$\frac{\mathrm{d}x}{\mathrm{d}t} = (\pm B \ln 2) 2^{-t}$			$\frac{dy}{dt} = (3\ln 2)2^{t}$ $\frac{dx}{dt} = (-4\ln 2)2^{-t}$
	dv	AO2.1	R1	$\frac{dv}{dv} = (3\ln 2)2^t$
	Uses chain rule with correct $\frac{dy}{dt}$			$\frac{dy}{dx} = \frac{(3\ln 2)2^{t}}{(-4\ln 2)2^{-t}}$
				$\int dx \left(-4\ln 2\right) 2$
	and $\frac{dx}{dt}$ and completes rigorous			$= -\frac{3}{4} \times 2^{2t}$
	argument to obtain fully correct			4
	printed answer			
(b)	Rearranges to write 2^{-t} in terms of	AO3.1a	M1	$2^t = \frac{y+5}{3}$
	x or 2^t in terms of y			3
	Writes given expression in terms of			$2^{-t} = \frac{x-3}{4}$
	t			
	Eliminates t	AO1.1a	M1	$1 = \left(\frac{y+5}{3}\right)\left(\frac{x-3}{4}\right)$
	Or			3 / 4 /
	Compares coefficients PI by <i>a</i> =5			12 = xy + 5x - 3y - 15
	or b=-3	AO2.1	R1	xy + 5x - 3y = 27
	Completes rigorous argument to obtain correct values of a , b and c	AU2.1	ΚI	
	and write the Cartesian equation			
	in the required form			
	ISW			
				AL T
				ALT
				$xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$
				$=12-15+(4a-20)2^{-t}+(3b+9)2^{t}+3a-5b$ a=5,b=-3
				xy + 5x - 3y = -3 + 15 + 15 $= 27$
	Total		6	

Q	Marking Instructions	AO	Marks	Typical Solution
6(a)	Writes in a form to which the	AO3.1a	M1	$\frac{1}{\sqrt{4+x}} = \frac{1}{2} (1 + \frac{x}{4})^{-\frac{1}{2}}$
	binomial expansion can be applied			$\sqrt{4+x} - 2^{(1+\frac{1}{4})}$
	Accept $A(1+\frac{x}{4})^{-\frac{1}{2}}$			$\approx \frac{1}{2} \left[1 + \left(-\frac{1}{2} \right) \frac{x}{4} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^2}{2!} \right]$
	Uses binomial expansion for their	AO1.1a	M1	2 2 2 2 2!
	$(1+kx)^{\pm\frac{1}{2}}$ with at least two terms			1 2 2 2 7
	correct (can be unsimplified)			$\approx \frac{1}{2} \left[1 - \frac{x}{8} + \frac{3x^2}{128} \right]$
	Obtains correct simplified answer No need to expand brackets CAO	AO1.1b	A1	$\approx \frac{1}{2} - \frac{1}{16}x + \frac{3}{256}x^2$
(b)	Substitutes $-x^3$ in their three term expansion from part (a)	AO1.1a	M1	$\frac{1}{\sqrt{4-x^3}} \approx \frac{1}{2} - \frac{1}{16} \left(-x^3\right) + \frac{3}{256} \left(-x^3\right)^2$
	Obtains correct expansion. FT their (a)	AO1.1b	A1F	$\approx \frac{1}{2} + \frac{x^3}{16} + \frac{3x^6}{256}$
(c)	Uses their three term expansion as the integrand ignore limits PI by next mark	AO1.1a	M1	$\int_0^1 \frac{1}{\sqrt{4 - x^3}} dx \approx \int_0^1 \frac{1}{2} + \frac{x^3}{16} + \frac{3x^6}{256} dx$
	Integrates (at least two terms correct)	AO1.1a	M1	$\approx \left[\frac{x}{2} + \frac{x^4}{64} + \frac{3x^7}{1792} \right]_0^1$
	Obtains correct value	AO1.1b	A1	$\begin{bmatrix} 2 & 64 & 1792 \end{bmatrix}_0$
	CAO			$\approx \frac{1}{2} + \frac{1}{64} + \frac{3}{1792}$
				2 64 1792
				≈0.5172991
(d)(i)	Explains that each term in the expansion is positive	AO2.4	E1	Each term in the expansion is positive.
	Deduces that increasing the	AO2.2a	R1	
	number of terms will increase the			So increasing the terms will
	estimated value and that the value must be an underestimate.			increase the estimated value hence the value must be an
	(Condone inference if evidence			underestimate.
	given ie value calculated			
	numerically and compared)			
(d)(ii)	States the validity of their binomial expansion for part (b)	AO3.1a	B1F	The binomial expansion is valid for $ x < \sqrt[3]{4}$
	Provided their $k \neq \pm 1$			
	Compares integral lower limit with validity of correct expansion CAO	AO2.3	E1	$2 > \sqrt[3]{4}$
	Total		12	

Q	Marking Instructions	AO	Marks	Typical Solution
7(a)	Uses a technique which could lead	AO3.1a	M1	$AB^2 = (8-15)^2 + (17-10)^2$
	to showing two lines are			= 98
	perpendicular. Obtains at least one correct			
	distance (or distance ²) or gradient.			$AC^2 = (82)^2 + (177)^2$
	and an arrange of the second o			= 676
	Obtains three correct distances (or	AO1.1b	A1	$CB^2 = (152)^2 + (107)^2$
	distance ²) or two gradients.			= 578
	Lengths: $7\sqrt{2},17\sqrt{2},26$			$AB^2 + BC^2 = 98 + 578$
	$AB = -\frac{7}{7}, BC = \frac{17}{17}$			= 676
	Gradients: $7, BC = \frac{17}{17}$			$=AC^2$
				=AC
	Completes correct rigorous	AO2.1	R1	Angle ABC is a right angle.
	argument to show required result Uses Pythagoras			
	OR			
	Multiplies gradients to show			
	product is -1			
	AND			
(b)(i)	Writes a concluding statement. Explains why AC is a diameter	AO2.4	E1	The angle subtended by a diameter
(6)(1)	Must reference angle subtended by	7.02.1		is 90° : AC must be a diameter of
	diameter (condone "angle in a			the circle
	semi-circle") or give full			
	explanation.			
(b)(ii)	Deduces correct radius (or radius ²)	AO2.2a	B1	676
(/(/	Obtains mid-point of diameter	AO1.1b	B1	Radius $\frac{\sqrt{676}}{2} = 13$
	Uses $D(-8,-2)$ to find the	AO1.1a	M1	$\frac{2}{2}$
	distance or (distance ²) from their			(8-2-17-7)
	centre OE	1001	D.4	Centre $\left(\frac{8-2}{2}, \frac{17-7}{2}\right) = (3,5)$
	Completes rigorous argument by	AO2.1	R1	
	comparing $\sqrt{170} > 13$ (or			Distance from centre to D
	170 > 169) to show that D lies			$(38)^2 + (52)^2 = 11^2 + 7^2$
	outside the circle			=170 > 169
				So <i>D</i> lies outside the circle.
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
8(a)	Uses $A = \frac{1}{2}ab\sin C$ for triangle OAC or OAB	AO1.2	B1	$\frac{1}{2}r \times \frac{r}{2}\sin\theta = \frac{1}{4}\left(\frac{1}{2}r^2\theta\right)$
	PI by equation Forms an equation relating the area of OAC and ABC in the form $Ar^2 \sin \theta = Br^2 \theta$	AO3.1a	M1	$\Rightarrow \frac{r^2}{4}\sin\theta = \frac{1}{8}r^2\theta$ $\Rightarrow 2r^2\sin\theta = r^2\theta$ $\Rightarrow 2\sin\theta = \theta$
	Obtains fully correct equation ACF	AO1.1b	A1	AG
	Simplifies to obtain required equation, only award if all working correct with rigorous argument.	AO2.1	R1	
(b)	Rearranges to the form $f(\theta) = 0$	AO1.1a	M1	$f(\theta) = \theta - 2\sin\theta = 0$
	PI by correct θ_2 or θ_3			$\theta_{n} - 2\sin\theta_{n}$
	Differentiates their $f(\theta)$ or uses	AO1.1b	A1	$\theta_{n+1} = \theta_n - \frac{\theta_n - 2\sin\theta_n}{1 - 2\cos\theta_n}$
	calculator PI correct θ_2 or θ_3			$\theta_2 = 2.094395$
	Obtains correct θ_3	AO1.1b	A1	$\theta_3 = 1.913222$ $\theta_3 = 1.91322 (5 \text{ d.p.})$
(c)	Obtains percentage error for θ_3 AWRT 0.94%	AO3.2b	B1	0.935%
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
9(a)	Uses S_n for arithmetic sequence with $n = 6$ or $n = 36$	AO1.1a	M1	$S_6 = 3(2a+5d)$ $= 6a+15d$
	Finds correct expressions for S_6 and S_{36}	AO1.1b	A1	$S_{36} = 18(2a + 35d)$
	Forms equation in a and d using their S_{36} = $(their S_6)^2$	AO3.1a	M1	=36a+630d
	Expands quadratic and collects like terms to obtain printed answer Only award for completely correct solution with no errors	AO2.1	R1	$36a + 630d = (6a + 15d)^{2}$ $36a + 630d = 36a^{2} + 90ad + 90ad + 225d^{2}$ $4a + 70d = 4a^{2} + 20ad + 25d^{2}$
(b)	Uses u_n for arithmetic sequence with $n = 6$	AO1.1b	B1	$a+5d=25 \Rightarrow d=\frac{25-a}{5}$
	Eliminates a or d using their ' a +5 d = 25' and the printed result in part (a) to obtain a quadratic in one variable	AO1.1a	M1	$4a + 70\left(\frac{25 - a}{5}\right) = 4a^2 + 20a\left(\frac{25 - a}{5}\right) + 25\left(\frac{25 - a}{5}\right)^2$ $4a + 350 - 14a = 4a^2 + 100a - 4a^2 + 625 - 50a + a^2$
	Obtains correct quadratic equation Need not be simplified	AO1.1b	A1	$350-10a=100a+625-50a+a^2$
	Solves their quadratic $a = -5$, $a = -55$ (or $d = 6$, $d = 16$)	AO1.1a	M1	$a^2+60a+275=0$
	Deduces min value a =-55 NMS a =-55 5/5	AO3.2a	A1	a = -5, a = -55 (or d = 6, d = 16) a = -55
	Total		9	

Q	Marking Instructions	AO	Marks	Typical Solution
10(a)	Uses model to form an equation to			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
()	find k with $t=5.7$, $m=\frac{1}{2}m_0$	AO3.4	M1	$200 = 400e^{-kx} 5.7$
	Obtains correct value of k	AO1.1b	A1	
	Uses model to find m			<i>k</i> =0.1216047
	with t =4, m_0 =400 and t heir k	AO3.4	M1	
	(Condone <i>m</i> ₀ =200)			$m = 400 e^{-0.1216 \times 4}$
	Obtains correct value of <i>m</i>			
	CAO	AO1.1b	A1	m = 250
	(0.45,0000,)			
	(245.9296)			
(b)	AWRT 250 Uses model to set up inequality or			0.1016
(6)	equation using <i>their k</i> and 280	AO3.1b	M1	$400e^{-0.1216t} \le 280$
	Solves their inequality or equation			$e^{-0.1216t} \le 0.7$
	to find t			
	(Follow through their k only)	AO1.1b	A1F	$-0.1216t \le \ln\left(0.7\right)$
	(. cc.: unough them world)	7.01.10		<i>t</i> ≥ 2.933
	(2.933067)			
	Interprets their solution			
	(Only follow through if time is	AO3.2a	A1F	10:56 am
	earlier than 1:42 pm)			
(c)	States any sensible reason such			Different and a limit at a ff
	as:			Different people eliminate caffeine at different rates
	Different people eliminate caffeine at different rates			at unierent rates
	at unferent rates			
	The model is based on an average			
	person	4.00.51	5.4	
	·	AO3.5b	B1	
	The length of time taken to drink			
	two cups of coffee may have been			
	significant			
	The amount of coffeine in a "atrana			
	The amount of caffeine in a "strong cup of coffee" may vary			
	Total		8	
	lotai		0	

Q	Marking Instructions	AO	Marks	Typical Solution
11(a)(i)	Uses model to form equation	AO3.4	M1	$\therefore 10 + 100 \left(\frac{T}{30}\right)^3 - 50 \left(\frac{T}{30}\right)^4 = 0$
	with $V=0$ Rearranges to isolate T^4 term	AO1.1a	M1	$\left \begin{array}{c}10 + 100 \left(\frac{1}{30} \right) - 50 \left(\frac{1}{30} \right) \right = 0$
	Completes rigorous and	AO1.1a	IVI I	$(T)^4$ $(T)^3$
	convincing argument to clearly show the required result. Need to see evidence of division by T to isolate T^3 term Must be an equation throughout AG	AO2.1	R1	$\Rightarrow 50 \left(\frac{T}{30}\right)^4 = 10 + 100 \left(\frac{T}{30}\right)^3$ $\Rightarrow \frac{T^4}{16200} = 10 + \frac{T^3}{270}$ $\Rightarrow \frac{T^3}{16200} = \frac{10}{T} + \frac{T^2}{270}$ $\Rightarrow T = \sqrt[3]{\frac{162000}{T} + 60T^2}$
11(a)(ii)	Calculates <i>T</i> ₁ (44.96345)	AO1.1a	M1	T ₁ =44.963
	Calculates T_2 and T_3			$T_2 = 49.987$
	(49.98742) Condone greater than 3dp	AO1.1b	A1	T ₃ = 53.504
	(53.50407)			
11(a)(iii)	Explains 38 in context	AO3.2a	B1	38 represents current year 2018
11(b)	Translates 2029 into t=49	AO3.3	B1	$10+100\left(\frac{t}{30}\right)^3-50\left(\frac{t}{30}\right)^4=4.5\times1.063^t$
	Uses models to set up equation or evaluate both models at one value of t	AO3.4	M1	$\Rightarrow t = 49.009$
	Obtains correct values for both models for two appropriate values of t . $t \in [49,50]$ eg t =49 and t =50	AO1.1b	A1	1980 + 49 = 2029 Therefore use of oil and production of oil will be equal in the year 2029
	t =49 gives: 89.89 and 89.81 t =50 gives: 87.16 and 95.47			
	Or Solves equation using any method to obtain AWFW 49.009 to 49.01			
	Explains that the use of oil and the production of oil are equal when $t = 49.009$ Or Uses a change of sign argument OE to explain that the value of each model for two appropriate values of t shows that the	AO2.4	E1	
	production of oil and the use of oil are the same for $t \in (49,50)$			
	Total		10	

Q	Marking Instructions	AO	Marks	Typical Solution
12(a)	Begins a proof using a valid	AO1.1a	M1	
1=(3-)	method			$p\left(-\frac{1}{2}\right) = 30 \times \left(-\frac{1}{2}\right)^3 - 7\left(-\frac{1}{2}\right)^2 - 7\left(-\frac{1}{2}\right) + 2$
	Eg. Factor theorem, algebraic			
	division, multiplication of correct			= 0
	factors			$\therefore 2x+1$ is a factor of $p(x)$
	Constructs rigorous mathematical	AO2.1	R1	p(x)
	proof.			
	To achieve this mark:			
	Factor theorem			
	the student must clearly substitute and state that $p(-1/2)=0$ and clearly			
	state that this implies that $2x + 1$ is			
	a factor			
	Algebraic division OR			
	Multiplication of correct factors			
	The method must be completely			
	correct with a concluding statement			
(b)	Obtains quadratic factor PI	AO1.1a	M1	$p(x) = (2x+1)(15x^2 - 11x + 2)$
	Obtains second linear factor	AO1.1b	A1	=(2x+1)(5x-2)(3x-1)
	Writes $p(x)$ as the product of the	AO1.1b	A1	-(2x+1)(3x-2)(3x-1)
	correct three linear factors.			
(0)	NMS correct answer 3/3 Rearranges to achieve a cubic	AO3.1a	M1	2 2
(c)	equation in $\sec x$ (or $\cos x$)	A03.1a	IVII	$\frac{30\sec^2 x + 2\cos x}{7} = \sec x + 1$
	Equation in sec <i>x</i> (or cos <i>x</i>)	AO1.1a	M1	7
	from (b) or factorises	A01.1a	IVII	$\Rightarrow 30\sec^2 x + 2\cos x = 7\sec x + 7$
	Deduces that if solutions exist they	AO2.2a	A1	$\Rightarrow 30\sec^3 x + 2 = 7\sec^2 x + 7\sec x$
	must be of the form $\sec x = -\frac{1}{2}$, \sec			$\Rightarrow 30 \sec^2 x + 2 = 7 \sec^2 x + 7 \sec x$
	$x = 1/3 \text{ or } \sec x = 2/5 \text{ OE}$			20 3 7 2 7
	Explains that the range of $\sec x$ is	AO2.4	E1	$30\sec^3 x - 7\sec^2 x - 7\sec x + 2 = 0$
	$(-\infty,-1]\cup[1,\infty)$ OE			$\Rightarrow (2\sec x + 1)(5\sec x - 2)(3\sec x - 1) = 0$
	OE for $\cos x$			\Rightarrow sec $r = -\frac{1}{2} + \frac{1}{2} = \frac{2}{2}$
	Completes argument explaining	AO2.1	R1	$\Rightarrow \sec x = -\frac{1}{2}, \frac{1}{3}, \frac{2}{5}$
	that there cannot be any real	, , , , , ,		These values do not fall within the
	solutions as values are outside of			range of $\sec x$ as they are between
	the function's range.			-1 and 1
				$\therefore \frac{30\sec^2 x + 2\cos x}{7} = \sec x + 1 \text{ has}$
				$\therefore {7} = \sec x + 1 \text{ has}$
				no real solutions.
	Total		10	

Q	Marking instructions	AO	Mark	Typical solution
	Identifies and clearly defines	AO3.1b	B1	Width of rectangle = $2x$
13	consistent variables for length and			Length of rectangle = $2y$
	width. Can be shown on diagram.			
	Models the area of rectangle with	AO3.3	M1	A = 4xy
	an expression of the correct			
	dimensions			
	Eliminates either variable to form a	AO1.1a	M1	$x^2 + y^2 = 16$
	model for the area in one variable.	7101.10	1011	x + y = 10
	Obtains a correct equation to	AO1.1b	A1	$A = 4x\sqrt{16 - x^2}$
	model the area in one variable			
				7
	Differentiates their expression for	AO3.4	M1	$\frac{dA}{dx} = 4\sqrt{16 - x^2} - \frac{4x^2}{\sqrt{16 - x^2}}$
	area. Condone one error			ax $\sqrt{16-x^2}$
				$dA = 64 - 8x^2$
				$\frac{dA}{dx} = \frac{64 - 8x^2}{\sqrt{16 - x^2}}$
				For maximum point $\frac{dA}{dt} = 0$
				αx
	Explains that their derivative equals	AO2.4	E1	$\frac{64-8x^2}{\sqrt{16-x^2}}=0$
	zero for a maximum or stationary			$\sqrt{16-x^2}$
	point.			$x = 2\sqrt{2}$
	Equates area derivative to zero	AO1.1b	A1	¬ '
	and obtains correct value for either	7101110	,	When $x = 2.8$, $\frac{dA}{dx} = 0.448$
	variable.			
	CAO		<u>.</u>	When $x = 2.9$, $\frac{dA}{dx} = -1.191$
	Completes a gradient test or uses	AO1.1a	M1	
	second derivative of their area function to determine nature of			Therefore maximum
	stationary point			
	Deduces that the area is a	AO2.2a	R1	The maximum area is 32 sq in
	σ			·
	maximum at $x = 2\sqrt{2}$ or $\theta = \frac{\pi}{4}$			
	Values need not be exact			
	Obtains maximum area with correct	AO3.2a	B1	7
	units AWRT 32			
	Total		10	

Q	Marking instructions	AO	Mark	Typical solution
14(a)	Explains why $\angle EFQ = A$ Must be a fully correct explanation with reasons which may include: Vertically opposite angles and right angle implies similar triangles.	AO2.4	E1	$\angle OQR = \angle FQE$ vertically opposite angles $\angle ORQ = \angle FEQ = 90^{\circ}$ So $\angle EFQ = A$
	Deduces $\frac{PF}{EF} = \cos\left(A\right)$ AND $\frac{EF}{OF} = \sin(B)$ Must have at least stated or implied that $\angle EFQ = A$ through similarity	AO2.2a	R1	Since $\angle EFQ = A$ $\frac{PF}{EF} = \cos(A)$ And $\frac{EF}{OF} = \sin(B)$ in triangle OEF
14(b)	Completes proof	AO2.2a	В1	$\frac{DE}{OE} \times \frac{OE}{OF} + \frac{PF}{EF} \times \frac{EF}{OF}$ $= \sin A \cos B + \cos A \sin B$
14(c)	Explains that the proof is based on right angled triangles which limits A and B to acute angles	AO2.3	E1	Since the proof is based on the diagram which uses right-angled triangles it is assumed that <i>A</i> and <i>B</i> are acute. Therefore, the proof only holds for acute angles.
14(d)	Substitutes $-B$ into identity for $\sin(A+B)$ to give $\sin(A-B)$	AO2.1	R1	$\sin(A-B) = \sin A \cos(-B) + \cos A \sin(-B)$
	Recalls at least one of the identities $\sin(-B) = -\sin(B)$ $\cos(-B) = \cos(B)$ Must be explicitly stated	AO1.2	B1	$\sin(-B) = -\sin(B)$ $\cos(-B) = \cos(B)$
	Deduces correct identity with no errors. This must be clearly deduced from a correct argument and not simply stated.	AO2.2a	R1	Hence $\sin(A-B) = \sin A \cos B - \cos A \sin B$
	Total		7	

Q	Marking instructions	AO	Mark	Typical solution
15(a)	Forms expression of the correct form for the gradient of the line AB condone sign error	AO1.1a	M1	Gradient of AB $= \frac{(-4+h)^3 - 48(-4+h) - ((-4)^3 - 48(-4))}{h}$
	Obtains correct expansion of $(-4+h)^3$	AO1.1b	B1	$= \frac{h^3 - 12h^2 + 48h - 64 - 48h + 192 - 128}{h}$
	Obtains correct expansion of numerator	AO1.1b	A1	$=\frac{h^3-12h^2}{h}$
	Simplifies numerator and shows given result	AO2.1	R1	$=h^2-12h$
15(b)	Explains that as $h \rightarrow 0$ the gradient of the line AB \rightarrow the gradient of the curve or tangent to the curve	AO2.4	E1	The gradient of the curve is given by $\lim_{h\to 0} h^2 - 12h$
	Or gradient of curve is given by $\lim_{h\to 0}h^2-12h$ Must not use $h=0$			
	Explains that $\lim_{h\to 0} h^2 - 12h = 0$ therefore A must be a stationary point	AO2.4	E1	As $h \rightarrow 0$, $h^2 - 12h \rightarrow 0$ therefore A must be a stationary point
	Total		6	

100

TOTAL