GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Paper 2

Time: 1 hour 30 minutes

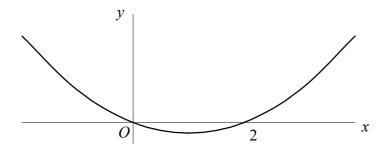
INSTRUCTIONS TO CANDIDATES

- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.

- 1. Given a > 0, express $\frac{1}{\left(\sqrt{a}\right)^{\frac{2}{3}}}$ in the form a^n , stating the value of n. [2]
- 2. Solve the simultaneous equations y x = 2, $x^2 + 2y^2 = 19$. [4]
- 3. The coordinates of the points A and B are (-5, 3) and (5, -2) respectively. Find
 - i) the coordinates of the midpoint of AB, [1]
 - ii) the gradient of AB, [1]
 - iii) the length of AB. [1]
- 4. a) Solve, for x in terms of k, the inequality $x^2 + 4kx 12k^2 > 0,$ where k is a positive constant. [3]
 - b) i) Solve the equation $x^2 + (3\sqrt{3})x 30 = 0$, giving each of your answers in the form $p\sqrt{3}$, where p is an integer. [3]
 - ii) Solve the equation $z^{\frac{2}{3}} + \left(3\sqrt{3}\right)z^{\frac{1}{3}} 30 = 0$, giving each of your answers in the form $r\sqrt{3}$, where r is an integer. [3]
- 5. The graph shows y = f(x). Sketch, on separate diagrams, the graphs of:
 - a) y = f(x + 2) b) y = f(-x)



y = f(2x).

- 6. A circle has equation $x^2 + y^2 + 4x 2y = 21$.
 - a) Find the co-ordinates of the centre of the circle and the radius. [3]
 - b) Find the equation of the **tangent** to the circle $x^2 + y^2 + 4x 2y = 21$ at the point (3, 2). [4]
- 7. The equation of a curve is $y = 6x^2 x^3$. Find the coordinates of the two stationary points on the curve, and determine the nature of each of these stationary points. [6]

State the set of values of x for which $6x^2 - x^3$ is a decreasing function of x. [2]

The gradient at the point M on the curve is 12. Find the equation of the tangent to the curve at M. [4]

8. The line given by y = x + a intersects the curve with equation $y = 1 - \frac{4}{x}$ at one point only.

Find the possible values of a. [4]

ANSWERS.

1.
$$a^{-\frac{1}{3}}$$
; $n = -\frac{1}{3}$.

2.
$$x = 1$$
, $y = 3$ or $x = -\frac{11}{3}$, $y = -\frac{5}{3}$.

3. i)
$$(0, -5)$$
 ii) $-\frac{1}{2}$ iii) $5\sqrt{5}$ units.

4. i)
$$x < -6k \text{ or } x > 2k$$

b) i)
$$x = -5\sqrt{3} \text{ or } 2\sqrt{3}$$

i)
$$x = -5\sqrt{3} \text{ or } 2\sqrt{3}$$

ii) $z = -375\sqrt{3} \text{ or } 24\sqrt{3}$.

5. a)
$$\{\text{Translate } -2 \text{ units along the } x\text{-axis}\}$$

- b) {Reflect in the *y*-axis}
- {Stretch, scale-factor $\times \frac{1}{2}$ along the *x*-axis} c)

6. a)
$$(-2, 1)$$
; $\sqrt{26}$.

b)
$$y = 17 - 5x$$
.

7. (0, 0) is a minimum point, (4, 32) is a maximum point.
$$x < 0$$
 or $x > 4$. $y = 12x - 8$.

8.
$$a = -3 \text{ or } a = 5.$$