GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Paper 1

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

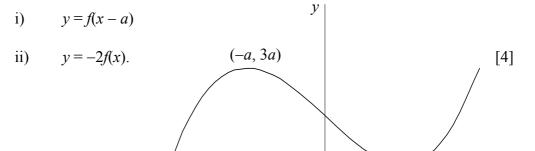
INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.

- 1. Express $\frac{1}{\sqrt[3]{x}}$ in the form x^n , stating the value of n. [2]
- 2. Factorise $21x^2 + 4x 1$. [1]

Hence, or otherwise, solve the equation

$$21y^{\frac{2}{3}} + 4y^{\frac{1}{3}} - 1 = 0.$$


Give your answers as fractions.

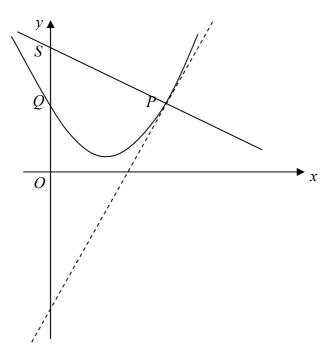
[3]

- 3. A circle has the equation $x^2 6x + y^2 + 8y + 22 = 0$.
 - i) Find the co-ordinates of the centre of the circle. [2]
 - ii) Find the radius of the circle. [1]
 - iii) Find the shortest distance from the origin to the circle. [2]
- 4. The straight line p is perpendicular to the line with equation x + 2y = 1 and passes through the point A(a, 2). Find, in terms of the constant a, an equation for the line p. [3]

Given that the line p crosses the y-axis at the point B(0, 3), find the value of a, and hence find the distance AB. [3]

- 5. Solve the simultaneous equations x 4y = 2, $x^2 4xy = 8$. [5]
- 6. The diagram shows the curve y = f(x), where a is a positive constant. The maximum and minimum points on the curve are (-a, 3a) and (a, 0) respectively. Sketch the following curves, on separate diagrams, in each case stating the co-ordinates of the maximum and minimum points:

0


(a, 0)

7. Find by differentiation the exact coordinates of the stationary point of the curve with equation

$$y = \frac{1}{x} + \frac{6}{x^2}. ag{4}$$

Determine whether this stationary point is a maximum or a minimum, showing your working. [2]

8.

The diagram shows the curve

$$y = x^2 - bx + c,$$

where b and c are positive constants such that $b^2 - 4c < 0$. The curve crosses the y-axis at the point Q with coordinates (0, c), and P is the point with coordinates (b, c). The normal to the curve at P meets the y-axis at S.

Show that the distance QS does not depend on the values of b and c. [4]

ANSWERS.

1.
$$x^{-\frac{2}{5}}$$
; $n = -\frac{2}{5}$.

2.
$$(7x-1)(3x+1)$$
. $y = \frac{1}{343}$ or $y = -\frac{1}{27}$.

3. i)
$$(3, -4)$$

ii) $\sqrt{3}$
iii) $5 - \sqrt{3}$.

ii)
$$\sqrt{3}$$

iii)
$$5-\sqrt{3}$$
.

4.
$$y = 2x + 2 - 2a$$
. $a = -\frac{1}{2}$. $AB = \frac{\sqrt{5}}{2}$.

5.
$$x = 4, y = \frac{1}{2}$$
.

6. i)
$$\max = (0, 3a), \min = (2a, 0)$$

ii)
$$\max = (a, 0), \min = (-a, -6a).$$

7.
$$\left(-12, -\frac{1}{24}\right)$$
. Min point.

8.
$$QS = 1$$
.