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abc



 

[3] 

2 

Answer all questions. 

 

1 The line L has equation 
9=+ yx  

 
 and the curve C has equation 

3
2 += xy  

 
 (a) Sketch on one pair of axes the line L and the curve C.  Indicate the coordinates of their  

points of intersection with the axes. (3 marks) 
  
 
 (b) Show that the x-coordinates of the points of intersection of L and C satisfy the equation 

06
2 =−+ xx  

 (2 marks) 
 
 (c) Hence calculate the coordinates of the points of intersection of L and C. (4 marks) 

 
2 The line AB has equation .725 =− yx  

 The point A has coordinates ( )1,1 −  and the point B has coordinates (3, k) . 

  (a) (i) Find the value of k. (1 mark) 
 
 (ii) Find the gradient of AB. (2 marks) 
 

 (b) The point C has coordinates (– 6, –2) .  Show that AC has length 2p , where p is an  

integer. (3 marks) 
 

 3 (a) Given that ( )1–x  is a factor of ( ),f x  where 

( ) 104f
3 +−−= kxxxx

2  

   show that .7=k  (2 marks) 

  (b) Divide ( )xf  by ( )1–x  to find a quadratic factor of ( )xf . (2 marks) 

  (c) Write ( )xf  as a product of three linear factors. (2 marks) 

  (d) Calculate the remainder when ( )xf  is divided by ( )2–x . (2 marks) 
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 4 The number x satisifies the equation 

016
2 =++ mxx  

 where m is a constant. 
 
 Find the values of m for which this equation has: 
 

 (a) equal roots; (2 marks) 
 
 (b) two distinct real roots; (2 marks) 
 
 (c) no real roots. (2 marks) 

 

 5 The diagram shows a part of the graph of 

4
2xxy −=  

 

  (a) (i) Find .
x

y

d

d
 (2 marks) 

   (ii) Show that the x-coordinate of the stationary point P is .

2

1  (3 marks) 

   (iii) Find the y-coordinate of P. (1 mark) 
 
 (b) Find the area of the shaded region. (5 marks) 

 

 

Turn over ► 
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 6 A circle C has equation 

010
22 =−+ xyx  

 
 (a) By completing the square, express this equation in the form 

 

( ) 222

ryax =+−  

 (3 marks) 
 
 (b) Write down the radius and the coordinates of the centre of the circle C. (2 marks) 
 
 (c) Describe a geometrical transformation by which C can be obtained from the circle with 

equation 
222

ryx =+  

 (2 marks) 
 

 (d) The point P, which has coordinates (9, 3), lies on the circle C. 

 

(i) Show that the line which passes through P and the centre of C has gradient 
4

3  

 (2 marks) 

 
 (ii) Find the equation of the tangent to the circle C at the point P.  

Give your answer in the form y = mx + c . (4 marks) 

 

 7 (a) Express 
12

12

−
+

 in the form ba +2 , where a and b are integers. (4 marks) 

 
 (b) Solve the inequality 

( ) 2222 +< xx–  

 (4 marks) 
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 8 A curve has equation  

8  168 
234 ++−= xxxy  

 

 (a) Find 
x

y

d

d
 and .

x

y

2

2

d

d
 (5 marks) 

 

 (b) Find the three values of x for which .
x

y
0

d

d =  (4 marks) 

 

 (c) Determine the coordinates of the point at which y has a maximum value.  (5 marks) 
 

 

 
 
 
 
 
 
 
 

END  OF  QUESTIONS 
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MPC1 Specimen 
 

Question  Solution Marks Total Comments 

1(a) Sketches of L and C 

Coordinates (0, 9), (9, 0) indicated 

Coordinates (0, 3) indicated 
 

M1 

A1 

A1 

 

 

3 

General shape 

Accept labels on sketch 

ditto 

(b) Equating expressions for y 

06
2 =−+ xx  

 

M1 

A1 

 

2 

oe 

convincingly shown (ag) 

(c) Solving quadratic 

x = −3 or x = 2 
Points are (−3, 12) and (2, 7) 

M1 

A1 

A1A1 

 

 

4 

Two solutions needed 

 

A1 if not clearly paired 

 Total  9  

2(a)(i) k = 4 B1 1  
 

(ii) Gradient = 
13

)1(4

−
−−

 

 = 
2

5  

 

M1 

 

A1  

 

 

 

2 

 

or use of equation of AB 

 

ft wrong value of k 

(b) Distance formula 

50=AC  

 = 25  

M1 

A1 

A1 

 

 

3 

stated or used 

 

 Total  6  

3(a) Use of factor theorem 

1 − 4 − k + 10 = 0, so k = 7 
M1 

A1 

 

2 

or complete division 

convincingly shown (ag) 
 

(b) 

 

Quotient is 103
2 −− xx  

 

B2 

 

2 

 

B1 if −3x or −10 correct 
(c) f(x) = (x − 1)(x + 2)(x − 5) B2 2 B1 if signs wrong 

(d) f(2) = −12 
so remainder is −12 

B1 

B1  

 

2 

 

ft wrong value for f(2) 

 Total  8  
 

4(a) 064
2 =−m  

m = ±8 
M1 

A1 

 

2 

 

 

(b) 064
2 >−m  

m < −8 or m > 8 
M1 

A1 

 

2 

 

 

(c) 064
2 <−m  

−8 < m < 8 
M1 

A1 

 

2 

 

 Total  6  
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MPC1 (cont) 
 

Question  Solution Marks Total Comments 
 

5(a)(i) y′  = 3
81 x−  

 

M1A1 2 M1 if at least one term correct 

(ii) SP ⇒ y′  = 0 
 

M1  PI 

  ⇒ 
8

13 =x  A1   

  ⇒ 
2

1=x  convincingly shown A1 3 ag; 2/3 for verification 
 

(iii) 
8

3=
P

y  B1 1  

 

(b) ∫ −= 5

5

22

2

1d xxxy  (+ c) 
M1A1  M1 if at least one term correct 

 

 Substitution of 
2

1=x  

Area = 
80

1

8

1 −  

 = 
80

9
 

m1 

 

A1 

A1 

 

 

 

5 

 

 

First A1 awarded if at least one term 

correct 

 Total  11  
 

6(a) Use of 2510)5( 22 +−=− xxx  

a = 5, r = 5 

M1 

A1A1 

 

3 

 

Condone RHS = 25 

(b) Radius 5 

Centre (5, 0) 

B1  

B1  

 

2 

ft wrong value for a 

ditto 

(c) Translation 

5 units in positive x direction 

M1 

A1  

 

2 

Condone ‘transformation’ if clarified 

ft wrong value for a 

(d)(i) Use of formula for gradient 

Grad 
4

3  convincingly shown 

M1 

A1 

 

2 

 

ag 
 

(ii) Grad of tangent is 
3

4−  

Tangent is )9(3
3

4 −−=− xy  

i.e. y = – x

3

4
+15  

B1 

M1 

 

A1  

A1  

 

 

 

 

4 

 

 

 

ft wrong gradient 

ft wrong gradient 

 Total  12  

7(a) Rationalising denominator 

Numerator becomes 322 +  

Denom = 1, so ans is 322 +  

M1 
 

m1A1 
 

A1  

 

 
 

4 

 

 
 

ft one small error in numerator 
 

(b) LHS = 22 −x  B1  Allow 42 −x  

 2222 +<− xx  M1  for isolating x terms 

 Reasonable attempt at division m1   

 

12

222

−
+<x  

A1  4 ft error in expanding LHS 

 

 

 Total  8  
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MPC1 (cont) 
 

Question  Solution Marks Total Comments 
 

8(a) y′ = xxx 32244
23 +−  

y ′′  = 324812
2 +− xx  

M1 

A2 

m1 

A1  

 

 

 

5 

at least one term correct 

A1 with one error 

at least one term correct 

ft numerical error in y′  
 

(b) y′= 0 if x = 0 

 or if 086
2 =+− xx  

 ie x = 2 or x = 4 

B1 

M1 

A2 

 

 

4 

 

 

A1 if only one small error 
 

(c) y ′′  = 32, −16, 32 M1 

A1  

 

 

M1 if at least one correct 

ft numerical error in y ′′  
 Relationship between sign of y" and 

maximum/minimum 

Max at x = 2 

y = 24 

 

M1 

A1 

A1 

 

 

 

5 

 

 Total  15  

 TOTAL  75  
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• the AQA booklet of formulae and statistical tables. 

You may use a graphics calculator. 
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Answer all questions. 

1 The diagram shows triangle ABC. 
 

 

 

The lengths of AB and AC are 7cm and 8cm respectively.  The size of angle BAC is 60°. 

Calculate the length of BC, giving your answer to 3 significant figures.     (3 marks) 
 

 2  The diagrams show a square of side 6 cm and a sector of a circle of radius 6 cm and angle θ  
radians. 

 

 The area of the square is three times the area of the sector. 

  (a)  Show that 
3

2=θ .        (2 marks)  

  (b)  Show that the perimeter of the square is 1
2

1  times the perimeter of the sector.  (3 marks)  

 

 3 The nth term of an arithmetic sequence is un , where  
 

un = 10 + 0.5n 
 
 (a) Find the value of  u1 and the value of  u2 .      (2 marks) 
 
 (b)  Write down the common difference of the arithmetic sequence. (1 mark) 
 
 (c)  Find the value of n for which un = 25. (2 marks) 

          (d)  Evaluate ∑
=

30

1n

n
u . (3 marks) 
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 4 (a)  Given that 

logax = loga5 + 2 loga3 
 

  where a is a positive constant, show that x = 45. (3 marks) 
 

      (b)  (i)   Write down the value of  log2 2. (1 mark) 
  

 (ii) Given that  

log2 y =  log42 
   
  find the value of y. (2 marks) 

 
 

5 The curve C is defined by the equation 

4

2 1
2

x

xxy +=    for x > 0 

 (a)  Write xx
2  in the form x

k
,  where  k is a fraction. (1 mark) 

 

(b) Find 
x

y

d

d
. (3 marks) 

 

(c) Find an equation of the tangent to the curve C at the point on the curve where x = 1. 
   (4 marks) 

 (d)   (i)    Find 
2

2

d

d

x

y
. (2 marks) 

 
 (ii)  Hence deduce that the curve C has no maximum points. (2 marks) 

 
 

6 The amount of money which Pauline pays into an insurance scheme is recorded each year.  The 
amount which Pauline pays in during the nth year is £An.  The first three values of An  are given 
by: 

A1 = 800  A2 = 650        A3 = 530 
 

The recorded amounts may be modelled by a law of the form 

 

qpAA
nn

+=+1  

where p and q are constants. 

 
 (a) Find the value of p and the value of q. (5 marks)

  
  
 (b) Given that the amounts converge to a limiting value,  £V,  find an equation for V and hence 

find the value of V. (3 marks)
  

 
 

Turn over ► 
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 7 (a)  Express 
2

5
1

x

x +
 in the form qp

xx + , where p and q are integers. (2 marks) 

  (b)  Hence find the exact value of ∫ 






 +2

3

1

2

5
1

x

x

xd . (5 marks) 

 

 

 8 The angle θ  radians, where  πθ 20 ≤≤ ,  satisfies the equation 
 

     3 tan θ  = 2 cos θ   
 

 (a) Show that                         3 sin θ  = 2 cos2θ   (1 mark) 
 

 (b) Hence use an appropriate identity to show that 
      

2 sin
2θ  + 3 sin θ  − 2 = 0        (3 marks) 

  (c) (i) Solve the quadratic equation in part (b).  Hence explain why the only possible value 

of sin θ  which will satisfy it is 
2

1 . (3 marks) 

  

    (ii)   Find the values of θ for which sinθ  =
2

1
 and 0  θ   π2 .  (2 marks) 

 
(d)   Hence write down the solutions of the equation  

 

     3 tan 2x = 2 cos 2x 

 

    that lie in the interval 0°  x  180°. (3 marks) 
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 9 The diagram shows a sketch of the curve with equation  x

y 4= . 
 

 
 

 

 (a) (i)  Use the trapezium rule with five ordinates (four strips) to find an approximation  

 for x
x

d4

2

0

∫ . (4 marks) 

  

  (ii) By considering the graph of x

y 4= , explain with the aid of a diagram whether your 

approximation will be an overestimate or an underestimate of the true value  

for x
x

d4

2

0

∫ . (2 marks) 

  

  (b)  Describe the single transformation by which the curve with equation y = 5 × 4
x

  can be 

obtained from the curve with equation x

y 4= .  (2 marks) 

 

 (c)  Sketch the curve with equation  x

y
−= 4 . (1 mark) 

 

 (d)  The two curves  y = 5 × 4
x

  and  x

y
−= 4  intersect at the point P.  

   

(i) Show that the x-coordinate of the point P is a root of the equation 2.04
2 =x  

  (2 marks) 

  
(ii) Solve this equation to find the x-coordinate of the point P.  Give your answer to  
  5 significant figures. (3 marks) 

 

END  OF  QUESTIONS 
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 MPC2  Specimen  
 

Question  Solution Marks Total Comments 

1 o

60cos87287
222 ×××−+=BC  

         = 566449 −+  

M1 

m1 

  

          = 57 55.757 ==⇒ BC to 3sf A1 3  

 Total  3  

2(a) 
{Area of square} = 3 × θ26

2

1

  
 

M1 

 

 Use of θ2
2

1

r    PI 

 
6
2
 = θ26

2

3
  ⇒ 

3

2=θ  
 

A1 

 

2 

 

ag 

(b) Arc length = 6θ 
 

Perimeter of sector = ( )θ612 +  

B1 
 

M1 
 

  

 
           = 246121

3

2

2

1 =






 ×+  

= perimeter of square 

 

 

A1 

 

 

3 

 

 

ag 

 Total  5  

3(a) u1 = 10.5;    u2 = 11 

 

B1B1 2 sc B1 for 10, 10.5  

(b) Common difference is 0.5 

 

B1 1  

(c) 10 + 0.5n = 25 ⇒ 0.5n = 25 – 10 

⇒ n = 30 

M1 

A1 

 

2 

 

 

 

(d) 

∑
=

30

1n

n
u  = sum of AP with n = 30 

 

M1 

  

 

 
         = ( )255.10

2

30 +  
 

m1 

  

oe 

          = 532.5 A1 3  

 Total  8  

4(a) logax = loga5 + loga3
2
 

logax = loga[5 × 3
2
]  

        ⇒  x = 45   

M1 

m1 

 

A1 

 

 

 

3 

PI 

 

 

ag  convincingly found 

(b)(i) log22 =  1  B1 1  

(ii) {log2 y =} log42 =  0.5 B1   

 
⇒  y = 222

1

=  
 

B1 

 

2 

 

 Total  6  
 

abc 
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MPC2 (cont) 
 

Question  Solution Marks Total Comments 

5(a) 
2

5

2
xxx =  

 

B1 

 

1 

 

Accept k = 2.5 

(b) 

 

 

 

 

42

5

2
−+= xxy  

 

5

2

3

4
5

x
x

dx

dy −=  

 

 

 

 

M1 

A1A1 

 

 

 

 

3 

 

 

 

One correct index ft 

A1 for each correct term 

(c) When x = 1,  y  = 2+1 = 3 

When x = 1,  y ′ = 5−4 = 1 

B1 

M1 

 

 

 

 

 Eqn. of tangent: ( )113 −=− xy  m1 

A1 

 

4 

 

Accept any valid form 

(d)(i) 

6

2

1

2

2
20

2

15

d

d

x
x

x

y +=  
 

B2,1  

 

 

2 

 

ft each term provided equivalent demands 

ie indices one fractional one ‘negative’ 

(ii) Since x>0,  y ′′(x) is >0 

so any turning point must be a minimum 

ie C has no maximum points 

 

 

E2,1,0 

 

 

2 

 

E1 for attempt to find the sign of y ′′(x) 

 Total  12  

6(a) 650 = 800 p + q 

530 = 650 p + q 

 

5

4=p ;    q = 10 

M1 

A1 

m1 

 

A1A1 

 

 

 

 

 

5 

For either equation 

Need both 

Full valid method to solve simultaneous 

equations 

 

(b) qpVV +=  M1   

 

p

q
V

−
=
1

 
 

m1 

  

 V = 50 A1  3 ft on 1 numerical slip in (a) 

 Total  8  

7(a) 23 −+ xx  M1 

A1 

 

2 

One power correct 

(b) 
1

4

4

−− x

x

 

 








 −−





















−









1
4 4

1

3

22

3
4

 

= 
192

67
1  

M1 

 

A1  

A1 

 

 

m1 

 

 

 

A1 

 

 

 

 

 

 

 

 

 

 

5 

Index raised by 1 (either term) 

 

One term correct ft p, q. 

All correct 

 

 

Use of limits 

 

 

 

Must be an exact value 

 Total  7  
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MPC2 (cont) 
 

Question  Solution Marks Total Comments 

8(a) 
θθθ

θ
θ 2

cos2sin3cos2
cos

sin
3 =⇒=  

 

B1 1 

 

ag  convincingly found 

(b) 1cossin
22 =+ θθ  

)sin1(2sin3 2θθ −=  

02sin3sin2
2 =−+ θθ  

M1 
 

A1 

A1 

 

 
 

3 

oe seen 

 
 

ag  convincingly found 

(c)(i) 

 

 

Attempt to solve for sin θ 

( )( ) 02sin1sin2 =+− θθ  

 

Since −1≤sin θ ≤ 1, the only possible 

value for sin θ  is 
2

1
 

M1 

A1 

 

 

 

A1 

  M0 for verification 

oe eg use of the formula. 

 

 

 

ag  convincingly found and explained 

(ii) θ = 0.5235… 

 

θ = 2.6179… 

B1 

 

B1  

 

 

2 

In (ii) accept 3sf and in terms of π; 

ft on their 0.5235… 

(d) 

2

1
2sin2cos22tan3 =⇒= xxx  

2x = 30°  or  150° 

⇒  x = 15°   

or   x = 75° 

 

M1 

 
 

A1 

A1 

 

 

 
 

 

3 

 

Links with previous parts 

 Total  12  

9(a)(i) h = 0.5 

Integral = h/2 {……} 

B1  

 {….}=

)2(f]1f)1(ff[2)0(f
2

1

2

1 +






++






+  

 

 

M1 

 

 {….}=1+2[2+4+8]+16 A1  

 Integral =11.25 A1 4  

(ii) Relevant trapezia drawn on a copy of 

given graph. 

 

M1 

 

 Overestimate A1` 2  

(b) Stretch in y-direction 

scale factor 5 

M1 

A1 

 

2 

 

(c) Sketch showing the reflection of the graph 

of the given curve in the y-axis 

 

B1 

 

1 

 

(d)(i) ( ) ( ) 1445445 =×⇒= − xxxx

 

2.04145
22 =⇒=×⇒
xx  

M1 
 

A1 

 
 

2 

 
 

ag convincingly found 

(ii) ln 4
2x

 = ln 0.2 M1  oe using base 10 

 

4ln

2.0ln
2 =x  

 

A1 

  

 x = − 0.58048(20…) A1 3 Need 5sf or better 

 Total  14  

 TOTAL  75  
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2 

Answer all questions. 

1 Find 
x

y

d

d
 when: 

(a) xxy 3tan= ; (3 marks) 

(b) 
x

x
y

sin= . (3 marks) 

 

2 A curve has equation ( )23 +
=

x

x
y .  The region R is bounded by the curve, the x-axis  

from the origin to the point ( )0,1  and the line 1=x . 

 

(a) Explain why R lies entirely above the x-axis. (1 mark) 

 

(b) Use Simpson’s Rule with five ordinates (four strips) to find an approximation for the 

area of R, giving your answer to 3 significant figures. (4 marks) 

 

(c) Find the exact value of the volume of the solid formed when R is rotated through  

2π radians about the x-axis.  (5 marks) 

 3 A curve has equation xy
x

4e
2 −= . 

(a) Show that the x-coordinate of the stationary point on the curve is 2ln
2

1 .  Find the 

corresponding y-coordinate in the form 2lnba + , where a and b are integers to be 

determined.  (6 marks) 

(b) Find an expression for 
2

2

d

d

x

y
 and hence determine the nature of the stationary 

point.  

 (3 marks) 

 

(c) Show that the area of the region enclosed by the curve, the x-axis and the lines 0=x   

and 1=x  is ( )5e
2

2

1 −  .  (5 marks) 
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4 (a)  Describe a sequence of geometrical transformations that maps the graph of xy sin=  
onto the graph of xy 2sin3+= . (4 marks) 

 

(b) Find the gradient of the curve with equation xy 2sin3+=  at the point where 
6

π

x = . 

 (3 marks) 

 

(c) (i) Find ∫ xxx d2sin . (4 marks)   

(ii) Hence show that ( ) ( )
8

23
d2sin32

π

0

+=+∫
ππ

xxx . (2 marks)  

 

     

5 [An insert is provided for use in answering this question.] 

The curve with equation 44
23 −−= xxy  intersects the x -axis at the point A where α=x . 

 

 (a) Show that α lies between 4 and 5.   (2 marks) 

 

(b) Show that the equation 044
23 =−− xx  can be rearranged in the form 

2

4
4

x

x += .  

       (2 marks) 

(c) (i) Use the iterative formula 
21

4
4

n

n

x

x +=+ with 5
1

=x  to find 
3
x , giving your answer 

to three significant figures.    (3 marks) 

 

   (ii) The sketch shows the graphs of 
2

4
4

x
y +=  and xy = and the position of 

1
x .   

On the insert provided, draw a cobweb or staircase diagram to show how 

convergence takes place, indicating the positions of 
2
x  and 

3
x .   (3 marks) 

 

 

 

Turn over ► 
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4 

 

 

6 Solve the equation 

   01cosec12cot4
2 =++ xx  

 

 giving all values of x to the nearest degree in the interval 0  x o

360 . (7 marks) 

 

 

7 The functions f and g are defined with their respective domains by 
  

        ( ) 0,
3

4
f >

+
= x

x

x  

 

        ( ) ∈−= xxx    ,29g
2 3 

 

 (a) Find ( )xfg , giving your answer in its simplest form.   (2 marks) 

 

 (b) (i) Solve the equation ( ) 1g =x .    (2 marks) 

 

   (ii) Explain why the function g does not have an inverse.    (1 mark) 

 

(c) Solve the equation ( ) 1g =x .  (3 marks) 

 

(d) The inverse of f is 1
f

− . 

 

(i) Find ( )x1
f

− . (3 marks) 

 

(ii) Solve the equation ( ) ( )xx ff
1 =− . (4 marks) 

 

 

 

 

 

 

 

 

 

 

 

END  OF  QUESTIONS 

 

 

 

 



 

[22] 

 

 

 

 

 

Surname  Other Names  

Centre Number      Candidate Number     

Candidate Signature  

 

 

General Certificate of Education 

Specimen Unit 

Advanced Level Examination 

MATHEMATICS  MPC3  

Unit Pure Core 3  

 

 

 

Insert for use in answering Question 5. 

 

Fill in the boxes at the top of this page. 

 

Fasten this insert securely to your answer book. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

abc



 

[23] 

 

 

 

 

MPC3 Specimen 
 

Question Solution Marks Total Comments 

  1(a) 2
sec3x xx 3tan3 +  M1  Product Rule 

  M1  2
sec  

  A1 3 Correct 

     

(b) 
2

sincos

x

xxx −
 

M1  Quotient Rule 

  B1  d(sin )

d

x

x

 = xcos  

  A1 3 Correct 

 Total  6  

  2(a) 0y ≥  when 0x ≥  so R is above x-axis E1 1  

     

             b) 
“Outside multiplier”   25.0

3

1 ×  
B1 

 

  

 { ++× )1()0(25.0
3

1
yy  

            4 [ ] })5.0(2)57.0()25.0( yyy ++  

    

 

M1 

 

 y(0) = 0;     y (0.25) = 0.17609;  

y(0.5) = 0.34300;    y (0.75) = 0.48193; 

y(1) = 0.57735 

 = 0.3246193…. A1  Correct to at least 2 sf 

 = 0.325 to 3 sf A1 4  

     

(c) 
1 2

3

0

d
2

x
V x

x
π=

+∫  
B1   

 k ln(x
3
 +2) M1   

                                 31

3
ln( 2)x +  A1  Integration correct 

 
                               (ln3 ln2)

3

π −  
m1  

A1 

 

5 

Correct use of limits 

 

 

 Total  10  

abc 
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  MPC3 (cont) 
 

Question Solution Marks Total  Comments 
 

3(a) 
4e2

d

d 2 −= x

x

y
 

M1 

A1 

 x

ke
2  

 
2e0

d

d 2 =⇒= x

x

y
 

 

M1 

  

 2ln2 =x     

 
2ln

2

1=⇒ x  
 

A1 

  

ag 

 22ln22 =−= ay  B1   

      2−=b  B1 6  
 

(b) x

x

y 2

2

2

e4
d

d
=  

 

B1  

  

 
82ln

2
d

2
d

2

1 ==
x

y
x  

 

M1 

  

 ⇒  Minimum Point A1  3 ft if negative for maximum 
 

(c) 22
2e

2

1
x

x −  
M1 

 

A1 
 

A1 

 

 

 

 

x

ke
2
 

2

1
x

e
2
 

2
2x−  

 







 −−






 − 02e
2

1

2

1 2  
 

m1 

  

Use of limits 0 and 1 

 ( )5e2e
22

2

1

2

1

2

1 −=−=  
 

A1 

 

5 

 

ag 

 Total  14  
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 MPC3 (cont) 
 

Question Solution Marks Total  Comments 

4(a) One way stretch in −x direction M1   

 
    scaling factor 

2

1
 

 

A1 

  

 translation (in y-direction)  M1   

 
     









3

0
of  

 

A1 

 

4 

 

 

(b) 
x

x

y
2cos2

d

d
=  

M1 

A1 

 cos 

Correct 

 
When 12

d

d
,

6 2

1 === x
x

yπ
x  

 

A1 

 

3 

 

 

 

(c)(i) 






− x

x

2cos
2

 
M1 

A1 

 Integration by parts attempt 

x2cos
2

1−  

      ∫+ xxd2cos
2

1
  

A1 

  

 
xx

x

2sin
4

1
2cos

2
+−=  

 

A1  

 

4 

 

(ignore +c) 

 

(ii) +
2

3
2

x

previous result and attempt at limits 
 

M1 

  

Ignore [ ]0−  

 2 2
3 3

8 4 8 4

π π π π− + − = + 
 

 
   

 

 
    

(3 2)

8

π π +=  
 

A1 

 

2 

 

ag  all integration must be correct for A1 

 Total  13  



 

[26] 

 MPC3 (cont) 
 

Question  Solution Marks Total  Comments 

5(a) ( ) ( ) 215f;44f =−=  M1  ( ) 44f
23 −−= xxx  

 change of sign ⇒ root between 4 and 5 A1 2  
 

(b) 
0

4
4

2
=−−

x

x

 

M1 

 
Divide by 

2
x  

 

2

4
4

x

x +=⇒  
 

A1 

 

2 

 

ag 
 

(c)(i) 

16.4

5

4
4

22

=

+=x

 

 

M1 

 

A1 

 

 

 

 

 

 23.4
3

=⇒ x  (to 3 sf) A1 3  

(ii) 

 

 

 

 

 

 

M1 

A1  

A1 

 

 

 

 

 

 

 

3 

 

 

 

 

 

Cobweb ‘to curve first’  

Thin line 
2
x⇒  marked  

Next iteration 
3
x⇒  marked 

 Total  10  

6 ( ) 01cosec121cosec4
2 =++− xx

 
M1  Attempt at 1coseccot

22 −= xx  
 

 03cosec12cosec4
2 =−+ xx  A1  or may use xx

22
sin1cos −=  

    
after  01

sin

12

sin

cos
4

2

2

=++
xx

x etc 

 

8

19212
cosec

±−=x  
 

M1 

  

 23205.323205.0 −=  A1   

 

x

x

sin

1
cosec =  

 

B1 

  

 3094.0 sin −=x     

 °=198x  A1   

                              °342  A1 7  

 Total  7  
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 MPC3 (cont) 
 

Question Solution Marks Total Comments 
 

7(a) ( )
2

293

4
f

x

xg

−+
=  

M1   

 

2
6

2

x−
=  

A1 2 and no further wrong ‘simplification’ 

(b)(i) 4129
22 =⇒=− xx  M1  2=x  scores M1 only 

  2±=x  A1 2  

(ii) Two values of x  map onto ⇒one  not 

one-one 

E1 1 or many-one 

(c)  Two values from g(x) =1    2±=x  B1    

 2 2
9 2 1 5x x− = − ⇒ =  M1   

       5x = ±  A1 3  
 

(d)(i) 
43

3

4 =+⇒

+
= yxy

x
y  

M1  multiplying out and attempt to make x  

the subject 

 
3

4 −=
y

x  
A1   

 

 ( ) 3
4

f
1 −=−

x

x  
A1 3  

(ii) their ( ) ( )xx ff
1 =−

 

and multiplying up 

M1  or ( ) xx =f  

( )xx +=⇒ 34  

 043
2 =−+ xx  A1  ( )( ) 014 =−+ xx  

 1,4−=⇒ x  A1   

 0>x     

 ⇒  only solution is    

 1=x  A1 4  

 Total  15 

 TOTAL  75 
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2 

 

Answer all questions. 

 1 The polynomials f(x) and g(x) are defined by 

( )
( ) xxx

xxx

−=

−+=
3

2

4g

344f

 

 

 (a) By considering ( )
2

1f and ( ),g
2

1  or otherwise, show that ( )xf  and ( )xg  

have a common linear factor. (3 marks) 

 

 (b) Hence write 
( )
( )x
x

g

f
 as a simplified algebraic fraction. (3 marks) 

 

 2 (a) Obtain the binomial expansion of ( )211 x+  as far as the term in .

2
x  (2 marks) 

  (b) (i) Hence, or otherwise, find the series expansion of ( )2124 x+  

as far as the term in 2
x . (3 marks) 

   (ii) Find the range of values of x for which this expansion is valid. (1 mark) 

 

 3 (a) Express sin4 θθ cos3− in the form ( ),α–sin θR where R is a positive constant and 
.900
oo << α  

   Give the value of α to the nearest .1.0
o  (3 marks) 

  (b) Hence find the solutions in the interval oo

3600 << θ  of the equation 

2cos3–sin4 =θθ  

   Give each solution to the nearest degree. (4 marks) 
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3 

 

 4 (a) Express x
2

sin4 in the form ,2cos xba + where a and b are constants. (2 marks) 
 

 (b) Find the value of .sin4 d

12

0

2
xx∫

π

 (4 marks) 

 

 (c) Hence find the volume generated when the part of the graph of  

 
xy sin2=  

 

  between x = 0 and x =
12

π  is rotated through one revolution about the x-axis. (2 marks) 

 

 5 The population P of a particular species is modelled by the formula  

-kt
P Ae=  

 where t is the time in years measured from a date when P = 5000. 
 
 (a) Write down the value of A. (1 mark) 
 
 (b) Given that P = 3500 when t = 10, show that .03567.0≈k  (4 marks) 
 
 (c) Find the value of the population 20 years after the initial date. (3 marks) 

 

 6 (a) Solve the differential equation 

5

10

d

d x

t

x −=  

   given that x = 1 when t = 0. (4 marks) 
 
 (b) Find the value of t for which x = 2, giving your answer to three decimal places. (2 marks) 
 

 

 

 

 

Turn over ► 
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4 

 7 (a) Express 

( )( )2112

125

+−
+
xx

x

 

   in the form  

( )21112 +
+

+
+

− x

C

x

B

x

A
 

 (4 marks) 
 

 (b) Hence find the value of 

( )( ) x

xx

x

d
11–2

125
2

1

2∫ +
+

 

 
  giving your answer in the form .2n1qp +  (6 marks) 

 8 A curve is defined by the parametric equations 

0,
2

,
2 22 ≠−=+= t

t
ty

t
tx  

  (a) (i) Express x + y and yx –  in terms of t. (2 marks) 

   (ii) Hence verify that the cartesian equation of the curve is  

( )( ) 32–
2 =+ yxyx  

 (2 marks) 

  (b) (i) By finding 
t

x

d

d
 and ,

d

d

t

y
 calculate the value of 

x

y

d

d
 at the point for which t = 2. 

 (5 marks) 

   (ii) Hence find the equation of the tangent to the curve at this point. 

Give your answer in the form ax + by = c, where a, b and c are integers. (3 marks) 
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5 

 9 The line 
1
l  has equation 

















+
















−=
















3

4

4

1

2

3

t

z

y

x

. 

 The line 
2
l  has equation .

2

3

1–

0

4

9

















+
















−=
















s

z

y

x

 

 (a) Show that the lines 1l  and 2l intersect and find the coordinates of their point of 

intersection. (5 marks) 
  

 (b) The point P on the line 1l  is where t = p, and the point Q has coordinates  (5, 9, 11). 

 
(i) Show that 

 

 (4 marks) 
 
 (ii) Hence find the coordinates of the foot of the perpendicular from the point Q to the 

line 
1
l . 

 (3 marks) 
 

 

 

 

 

 

END  OF  QUESTIONS 
 

 

8241

3

4

4

 . −=
















pQP
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MPC4 Specimen  
 

Question Solution Marks Total Comments 

1(a) f(
2

1 ) = 0, g(
2

1 ) = 0 

So 2x − 1 is a common factor 

M1A1 

A1 

 

3 

or other complete method 

or x −
2

1  

(b) )32)(12()(f +−= xxx  

)2)(12()(g 2
xxxx +−=  

So 
xx

x

x

x

+
+=

22

32

)(g

)(f
 

B1 

 

B1 

 

B1  

 

 

 

 

3 

 

 

 

 

ft numerical error 

 Total  6  

2(a) ...1)1( 2

8

1

2

12
1

+−+=+ xxx  M1A1 2 M1 if two terms correct 

(b)(i) 2
1

2
1

)1(2)24(
2

1
xx +=+  

... = ...2
2

16

1

2

1 +−+ xx  

B1 

M1 

A1 

 

 

3 

 

Reasonable attempt 

 

(ii) Valid if −2 < x < 2 B1 1  

 Total  6  

3(a) R = 5 

cos α or sin α = 
5

3

5

4
or     

α ≈ 36.9° 

B1 

 

M1 

A1 

 

 

 

3 

 

 

 

(b) 
5

2)sin( =−αθ  

One solution is 
5

21
sin

−+α  

Solutions 60° and 193° 

M1 

 

m1 

A1A1 

 

 

 

4 

PI 

 

 

Accept awrt 60 or 61, and awrt 193 

 Total  7  

4(a) Use of AA
2

sin212cos −≡  

xx 2cos22sin4
2 −≡  

M1 

A1 

 

2 

PI 

(b) ∫ −= xxx 2sin2d ...  (+ c) 

Use of 
2

1

6
sin =π  

2

1

6

d ...

12

0

−=∫
π

π

x  

M1A1 

 

m1 

 

 

A1 

 

 

 

 

 

4 

M1 if at least one term correct 

 

 

 

 

Accept 0.0236 

(c) 
xx

22 sin4)sin2( =  

So volume is ( )
2

1

6
−π π  

B1 

 

B1  

 

 

2 

 

Accept 0.0741 

ft one error 

 Total  8  

5(a) A = 5000 B1 1  

(b) k10
e50003500

−=  

ln 0.7 = −10k 
7.0ln

10

1−=k  

B1  

M1 

A1  

 

 

 

 

 

oe; ft wrong value for A 

oe 

ft one numerical error 

 

 ... ≈ 0.03567 A1 4 convincingly shown (ag) 

(c) 7134.02 5000eor  )7.0(5000 −=P  

... = 2450 

M1A1 

A1 

 

3 

M1 if only one small error 

Accept awrt 2450 

 Total  8  

 

 

 

abc 
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MPC4 (cont) 
 

Question Solution Marks Total Comments 

6(a) Attempt to separate variables M1   

 

∫ − x

x

10

d
 dx = ±k ln(10 −x) (+ c) 

m1   

 t = −5 ln(10 − x) + c A1   

 c = 5 ln 9 A1 4  

(b) x = 2 ⇒  t = 5 ln 9 − 5 ln 8 M1   

 ... ≈ 0.589 A1 2  

 Total  6  

7(a) )12()1)(12(2)1(125 −++−++≡+ xCxxBxAx  

A = 6, B = −3, C = 8 
B1 

M1A2 

 

4 

 

A1 if only one error 

(b) 

∫ −= )...12ln(3... x  

...
1

8
)1ln(3

+
−+−
x

x  (+ c) 

)4(2ln33ln33ln3...
3

8

2

1

−−+−=∫  

... = 2ln3
3

4 +  

M1 

A1  

B1  

B1  

 

m1 

 

 

A1  

 

 

 

 

 

 

 

 

6 

 

ft wrong values for 

coeffs throughout this question 

 Total  10  

8(a)(i) tyxtyx /4  ,2
2 =−=+  B2 2  

(ii) )/16)(2())(( 222
ttyxyx =−+  

... = 32 

M1 

A1 

 

2 

 

Convincingly shown (ag) 

(b)(i) 

2

2
2

d

d

t

t

t

x −= , 
2

2
2

d

d

t
t

t

y +=  

Use of chain rule 

When t = 2, 
7

9

d

d =
x

y
 

M1A1 

 

m1 

 

A2,1

 

 

 

 

5 

 

 

 

 

ft numerical or sign error 

(ii) The point is (5, 3) 

The tangent is )5(3
7

9 −=− xy  

ie 9x − 7y = 24 

B1 

M1 

 

A1  

 

 

 

3 

 

 

 

ft one numerical error 

 Total  12  



 

[35] 

MPC4 (cont) 
 

Question Solution Marks Total Comments 

9(a) 3 + 4 t = 9 − s 
−2 + 4t= −4 + 3s 
1 + 3t  = 2s 

Solve two to obtain s = 2, t = 1 

Check in 3rd equation 

Point of intersection is (7, 2, 4) 

M1 

 

A1 

m1 

A1 

A1F 

 

 

 

 

 

5 

oe 

(b)(i) 















 −
= −

10–3

114

24

p

p

p

QP  

)103(3)114(4)24(4

3

4

4

. −+−+−=
















pQP
 

... = 41p − 82 

 

 

M1A1 

 

 

m1 

 

A1 

 

 

 

 

 

 

 

4 

 

 

 

 

 

 

 

Convincingly shown (ag) 

 

(ii) 
08241  

1
=−⇒⊥ plQP  

... ⇒ p = 2 

Foot of perpendicular is (11, 6, 7) 

   M1 

A1 

A1 

 

 

3 

 

 Total  12  

 TOTAL  75  
 


