Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MM04

(Specification 6360)

Mechanics 4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM04				
Q	Solution	Marks	Total	Comments
	$M = \left(\frac{4-2}{2}, \frac{-1+1}{2}, \frac{4+6}{2}\right) = (1, 0, 5)$	B1		mid-point found
	$\overrightarrow{PM} = -\begin{pmatrix} -2\\-1\\4 \end{pmatrix} + \begin{pmatrix} 1\\0\\5 \end{pmatrix} = \begin{pmatrix} 3\\1\\1 \end{pmatrix}$	B1	2	AG
	alternative			
	$\overrightarrow{PQ} = \begin{pmatrix} 4\\1\\6 \end{pmatrix} - \begin{pmatrix} -2\\-1\\4 \end{pmatrix} = \begin{pmatrix} 6\\2\\2 \end{pmatrix}$	(B1)		
	$\overrightarrow{PM} = \frac{1}{2} \begin{pmatrix} 6\\2\\2 \end{pmatrix} = \begin{pmatrix} 3\\1\\1 \end{pmatrix}$	(B1)	(2)	AG
(b)	Moment = $\mathbf{r} \times \mathbf{F}$			
	$= \begin{vmatrix} \mathbf{i} & 3 & a \\ \mathbf{j} & 1 & 1 \\ \mathbf{k} & 1 & -2 \end{vmatrix}$	M1		attempt at $\mathbf{r} \times \mathbf{F}$ or $\mathbf{F} \times \mathbf{r}$
	$= \begin{pmatrix} -3\\a+6\\3-a \end{pmatrix}$	A2,1	3	one component correct \Rightarrow A1 $\mathbf{F} \times \mathbf{r}$ attempt \Rightarrow M1A1A0
(c)	Magnitude = $\sqrt{(-3)^2 + (a+6)^2 + (3-a)^2}$	M1		attempt at magnitude of their moment
	Hence $9 + (a+6)^2 + (3-a)^2 = 50$	A1F		forms equation magnitude ² = 50
	$a^2 + 3a + 2 = 0$	m1		attempts to solve a quadratic – real roots
	(a+2)(a+1) = 0	A 1		
	a = -2 or -1	A1	4	both values obtained; CAO No further penalty for $\mathbf{F} \times \mathbf{r}$ attempt which is correct
			0	ie $(3, -a-6, a-3)$ as components
	Total		9	

MM04 (cont	IM04 - AQA GCE Mark Scheme 2012 June series				
Q	Solution	Marks	Total	Comments	
2(a)	Take moments at A	M1		evidence of force × perpendicular distance	
	$2lP = \frac{200\sqrt{3}}{3} \left(\frac{3}{2}l\cos 30^\circ\right)$	A1		correct equation	
	P = 75N	A1	3	AG	
	alternative At <i>B</i> , perpendicular to <i>AB</i> $P=T_{BC}\cos 30^{\circ}$ At <i>C</i> , parallel to <i>BC</i> $T_{BC}=T_{CD}\cos 30^{\circ}$	(M1)		Sufficient equations to find <i>P</i>	
	At <i>D</i> , parallel to <i>CD</i> $T_{CD} = \frac{200\sqrt{3}}{3}cos30^{\circ}$	(A1)		All correct	
	$\Rightarrow P = \frac{200\sqrt{3}}{3} \times (\cos 30^\circ)^3 = 75$ N	(A1)	(3)	AG	
(b)	75 B				
	T_{BA}				
	At <i>B</i> , resolve horizontally $T_{BC} \cos 30^\circ = 75$	M1		Equation involving T _{BC}	
	$\Rightarrow T_{BC} = 86.6N$ BC in tension	A1 E1		or $50\sqrt{3}$	
	Resolve vertically $T_{BA} + T_{BC} \cos 60^\circ = 0$ $\Rightarrow T_{BA} = -T_{BC} \cos 60^\circ$	M1		Equation involving T_{BA}	
	$\Rightarrow T_{BA} = 43.3 \mathrm{N}$	A1F		or $25\sqrt{3}$	
	<i>BA</i> in compression	E1	6	ft their T_{BC}	
(c)	$ \begin{array}{c} B \\ T_{BC} \\ \hline C \\ \hline 60 \\ T_{CD} \\ D \\ \end{array} $				
	Resolve perpendicular to AC			Founding involving T	
	$T_{BC} = T_{CD} \cos 30^{\circ}$ $\Rightarrow T = \frac{86.6}{86.6} = 100 \text{N}$	M1	2	Equation involving T_{CD}	
	$\Rightarrow T_{CD} = \frac{86.6}{\cos 30^{\circ}} = 100 \text{ N}$	A1F	2	ft their T_{BC}	
(d)	<i>CD</i> in tension			D1 torra a sum of	
	AC in compression AD in compression	B2,1	2	B1 two correct B2 all correct	
	Total	D2,1	13		

MM04 (cont				1
Q	Solution	Marks	Total	Comments
3 (a)	$\begin{pmatrix} -2\\0 \end{pmatrix} + \begin{pmatrix} 0\\-5 \end{pmatrix} + \begin{pmatrix} p\\1 \end{pmatrix} + \begin{pmatrix} -3\\-4 \end{pmatrix} = \begin{pmatrix} p-5\\-8 \end{pmatrix}$	B1	1	
(b)(i)	Parallel to y-axis $\Rightarrow p-5=0$ p=5	M1 A1	2	set i component = 0 (seen or implied)
(ii)	$(-8, -2)$ $y \longrightarrow 2$ $(0, q)$ $(0, q)$ $(4, 0)$ $(4, 0)$ $(4, 0)$ $(4, 0)$ $(-8, -2)$			
	Moments about O for given system -5(4) + 2(3) + 3q + 5(2) - 1(8) = 3q - 12	M1 A2,1F		F × d for at least four components -1 each type of error, ft (a), (b)(i) (12 - 3q scores M1A2)
	Moments about <i>O</i> for equivalent system = $-8(3)$ = -24	B1		± 24 seen ft (a) allow $\pm 3 \times$ their j component
	Hence $3q - 12 = -24$ 3q = -12	M1		attempt at moment equation – must see clear use of Force × distance on RHS
	q = -4	A1F	6	ft error with p from (b)(i)
(c)	<i>C</i> =24	B1F		Should match part (b) – must be positive
		B1	2	accept 'clockwise'
	Total		11	
L	Total		11	

MM04 (cont)

MM04 (cont				
Q	Solution	Marks	Total	Comments
4 (a)	G = mid-point of BC			
H (a)	$PG = \sqrt{2l}$ or $PG^2 = 2l^2$	B1		correct distance, seen/used
	$MI_{P} = MI_{G} + mPG^{2}$	M1		
		1011		use of parallel axis theorem
	$=\frac{ml^2}{3}+m(2l^2)$	A1		$\frac{ml^2}{3}$ used
	$=\frac{7ml^2}{3}$	A1	4	AG
	11 2 $t^2 \cdot 2$ $t^2 \cdot 4$ $(5t^2)$	M1		MI of three particles
(b)	$\mathrm{MI}_{particles} = 3ml^2 + 3ml^2 + 4m(5l^2)$	A1		$3ml^2$ seen
	$=26ml^2$	A1		use of $5l^2$ with $4m$
	$MI_{rods} = \frac{ml^2}{3} + \frac{7ml^2}{3}$ $= \frac{8ml^2}{2}$	M1		MI of two rods (a) + (b)
	$MI_{system} = 26ml + \frac{8ml^2}{3}$ $= \frac{86ml^2}{3}$	A1F	5	ft error in (a)
(c)	Gain in KE = $\frac{1}{2}I\dot{\theta}^2$ = $\frac{1}{2}\left(\frac{86}{3}ml^2\right)\dot{\theta}^2$ = $\frac{43}{3}ml^2\dot{\theta}^2$	B1F		use of KE formula with MI from (b)
	Loss in PE for rod <i>BC</i> only = <i>mgh</i>	M1		use of <i>mgh</i> seen
	=2mgl	A1		loss for one rod only
	Loss in PE for $4m$ particle = $4mg(3l)$ = $12mgl$	A1		loss for 4m particle
	Gain for $3m$ particle at A = loss for $3m$ particle at $B = 3mgl$			
	(System) total loss of $PE = 14mgl$	A1		total loss for system
	$\therefore \frac{43}{3}ml^2\dot{\theta}^2 = 14mgl$	ml		conservation of energy equation – dependent on use of KE, PE for rod <u>and</u> particles
	$\dot{\theta} = \sqrt{\frac{42g}{43l}}$	A1F	7	ft error in (a) or (b) Condone $\dot{\theta}^2 = \frac{42g}{43l}$
	Total		16	

Q	Solution	Marks	Total	Comments
4(c)	Alternative 1			
	PE before motion = $mgl + 4mg(2l)$ = $9mgl$	(M1) (A1)		<i>mg</i> h used total PE correct
	PE after motion = $-3mgl - mgl - 4mgl + 3mgl$ = $-5mgl$	(A1)		total PE correct
	KE before = 0 KE after = $\frac{43}{3}ml^2\dot{\theta}^2$	(B1F)		use of KE formula with MI from (b)
	C of E \Rightarrow 9mgl = $\frac{43}{3}ml^2\dot{\theta}^2 - 5mgl$	(M1)		attempt at C of E equation
	$\Rightarrow \frac{43}{3}ml^2\dot{\theta}^2 = 14mgl$	(A1)		correct equation
	$\Rightarrow \dot{\theta} = \sqrt{\frac{42g}{43l}}$	(A1F)	(7)	
	Alternative 2			
	Centre of mass of system at $\left(\frac{17}{12}l, \frac{3}{4}l\right)$	(M1)		Centre of mass attempted
	Change in height of centre of mass = $\frac{3}{4}l + (\frac{17}{12}l - l) = \frac{7}{6}l$	(A1)		Change in height seen/used
	Total PE loss = $12mg\left(\frac{7}{6}l\right) = 14mgl$	(A1) (A1)		<i>mg</i> h used Total loss found
	KE gain $=\frac{43}{3}ml^2\dot{\theta}^2$	(B1F)		use of KE formula with MI from (b)
	C of E $\Rightarrow \frac{43}{3}ml^2\dot{\theta}^2 = 14mgl$	(M1)		C of E equation formed
	$\dot{\theta} = \sqrt{\frac{42g}{43l}}$	(A1F)	(7)	

Q	Solution	Marks	Total	Comments
5(a)				(use of π must be consistent)
	$\pi \int x y^2 dx = \pi \int_0^{2r} x (x+3r)^2 dx$	M1		attempt to integrate $\int xy^2 dx$
	• ² * • • • •			- must involve three terms
	$=\pi\int_0^{2r} (x^3 + 6rx^2 + 9r^2x) \mathrm{d}x$			
	$=\pi \int_{0}^{2r} \left[\frac{x^4}{4} + 2rx^3 + \frac{9r^2x^2}{2} \right]$	A 1		
	$=\pi \left[\frac{4}{4} + 2rx + \frac{1}{2} \right]$	A1		correct integration
	$=\pi\left\lceil 4r^{4}+16r^{4}+18r^{4}\right\rceil$	m1		Limits used correctly
	$=38r^4\pi$	A1		correctly evaluated in terms of r^4
	$\overline{x} = \frac{38r^4\pi}{98\pi r^3/3} = \frac{57r}{49}$	M1		use of $\frac{\pi \int xy^2 dx}{\text{volume}}$
	$98\pi r^{3}/3$ 49			
		A1F	6	ft 'their' $\int xy^2 dx$
(b)(i)				
(0)(1)	54			
	$P_{2r} \bigvee_{W \bigvee_{ar}} \frac{5r}{3r} \xrightarrow{ar} P \cos\theta$ $P_{ar} \bigvee_{W \bigvee_{ar}} \frac{5r}{P} \frac{1}{P} \frac{P}{P} \frac{P}{P} \frac{1}{P} \frac{P}{P} \frac{P}{P} \frac{P}{P} \frac{1}{P} \frac{P}{P} \frac{P}$			
	Moments at <i>A</i> :			
	$W(3r) = P\sin\theta(2r) + P\cos\theta(2r)$	M1A1		M1 attempt at moments — evidence o
		A1		force \times perpendicular distance A1 two terms correct
				A1 all terms correct
	$3W = 2P(\cos\theta + \sin\theta)$			
	$\frac{3W}{2(\cos\theta + \sin\theta)} = P$	A1	4	AG Must see evidence of factorising
	$2(\cos\theta + \sin\theta)$			
(ii)	Min value of <i>P</i> is when $\cos\theta + \sin\theta$ is at a	M1		Attempt to maximise denominator
	maximum.			
	Max value of $\cos\theta + \sin\theta$ is $\sqrt{2}$	A1		$\sqrt{2}$ seen
	Max P value = $\frac{3W}{2\sqrt{2}}$	A1	3	Or equiv eg $\frac{6\sqrt{2}W}{8}$, $\frac{3}{4}\sqrt{2}W$ etc
(iii)	$\theta = 45^{\circ}$	B1	1	
	Total		14	

MM04 (cont)

MM04 (cont	•			~
Q	Solution	Marks	Total	Comments
6(a)	$12a$ δx			
	12a			
	$m = 144a^{2}\rho$ $\Rightarrow \rho = \frac{m}{144a^{2}}$ Mass of strip = $12a\delta x\rho$	B1		seen anywhere – connection between ρ and m
	$MI_{square} = \sum 12a\delta x \rho x^2$	M1		Use of $\sum mx^2$
	$=\int_{0}^{12a} 12ax^2 \frac{m}{144a^2} dx$	Al		Correct integral formed
	$=\int_0^{12a} \frac{mx^2}{12a} \mathrm{d}x$	M1		attempt at integration – must be of the form $\int kx^2 dx$
	$= \int_{0}^{12a} \left[\frac{mx^{3}}{36a} \right]$		_	
	$=48ma^2$	A1	5	AG
	Alternative			
	12a			
	$12a$ $m = 144a^2 \rho \implies \rho = \frac{m}{144a^2}$	(B1)		seen anywhere – connection between ρ and m
	Mass of strip = $12a\rho\delta x$ MI of strip about end	(M1)		Use of $\frac{4}{3}ml^2$
	$=\sum \frac{4}{3}(12a\rho dx)(6a)^2$	(M1)		$\frac{1}{3}$
	$=\sum 576\rho a^3\delta x$			
	$= \int_{0}^{12a} \frac{576a^{3}m}{144a^{2}} dx = \int_{0}^{12a} 4am dx$	(A1)		Correct integral
	$= \frac{12a}{0} [4amx]$	(M1)		Attempt at integration
	$=48ma^2$	(A1)	(5)	AG
<u> </u>				1

M04 (cont Q	Solution	Marks	Total	Comments
6(b)(i)	$\overline{\qquad} \overline{\qquad} M$			
	6a 6a			
	↓ mg			
	Using $C=I\dot{\theta}$			
	$mg 6a \cos\theta = 48 ma^2 \ddot{\theta}$	M1		Attempt at equation - one side correct
		A1		both sides correct
	$\ddot{\theta} = \frac{g\cos\theta}{8a}$	A1	3	AG
	Alternative PE lost = $6magsin\theta$			
	KE gained = $\frac{1}{2}(48ma^2)\dot{\theta}^2$			
	$\frac{2}{2} \text{Conservation of energy} \Rightarrow$			
	$\frac{1}{2}(48ma^2)\dot{\theta}^2 = 6mag\sin\theta$	(M1)		Attempt at KE gained = PE lost to find $\dot{\theta}$
	$\dot{\theta}^2 = \frac{g\sin\theta}{4a}$			
	4 <i>a</i> Differentiate			
		(A1)		Differentiating
	$2\dot{\theta}\ddot{\theta} = \frac{g\cos\theta}{4a}\dot{\theta}$	(A1)		Differentiating
	$\Rightarrow \ddot{\theta} = \frac{g\cos\theta}{8a}$	(A1)		AG
	80			
(b)(ii)				
	R			
	69			
	10			
	∖rθ ^{★ mg}			
	X			
	Using NSL $mg \cos \theta - R = m(6a)\ddot{\theta}$	M1		attempt at $F = ma$
				*
	$R = mg\cos\theta - \frac{6mg}{8}\cos\theta$	A1		fully correct
	$=\frac{mg\cos\theta}{4}$	A1	3	substituting $\ddot{\theta}$ to obtain answer
6(b)(iii)	Consider frictional forces/resistances Total	E1	1 12	Any sensible modelling comment
	TOTAL		75	

MM04 (cont)