

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is f	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is	for method and	accuracy				
Е	mark is for explanation						
$\sqrt{\text{or ft or F}}$	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only RA required accuracy						
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
−x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
1(a)(i)	$f(x) = \frac{\cos x}{2x+1} - \frac{1}{2}$			OE
	$f(x) = \frac{\cos x}{2x+1} - \frac{1}{2}$ $f(0) = \frac{1}{2}; f(\frac{\pi}{2}) = -\frac{1}{2}$	M1		$x = 0$ LHS = 1, $x = \frac{\pi}{2}$ LHS = 0
	Change of sign $0 < \alpha < \frac{\pi}{2}$	A1	2	Either side of $\frac{1}{2}$, $\therefore 0 < \alpha < \frac{\pi}{2}$
	$\frac{\cos x}{2x+1} = \frac{1}{2}$ $2\cos x = 2x+1$ $2\cos x - 1 = 2x$ or, $\cos x = x + \frac{1}{2}$			Either line
	$x = \cos x - \frac{1}{2}$	B1	1	AG; or $\cos x - \frac{1}{2} = x$ All correct with no errors
(iii)	$x_1 = 0$			
	$x_2 = 0.5$	M1		Attempt at iteration
	$x_2 = 0.5$ $x_3 = 0.378$	A1	2	(allow $x_2 = -0.5$, $x_3 = 0.38, 0.4$) CAO
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(2x+1)(-\sin x) - \cos x \times 2}{(2x+1)^2}$	M1		Attempt at quotient rule: $\frac{\pm (2x+1)\sin x \pm 2\cos x}{(2x+1)^2}$
		A1		Either term correct
		A1	3	All correct ISW
` ′	$x = 0$ $\frac{dy}{dx} = -2$	m1		Correctly subst. $x = 0$ into their $\frac{dy}{dx}$
	$\therefore \text{ Gradient of normal} = \frac{1}{2}$	A1	2	CSO
	Total		10	

MPC3 (cont) Solution	Marks	Total	Comments
	$f(x) \geqslant 0$	M1	1 0141	For ≥ 0 , $f(x) > 0$
		A1	2	Correct; allow $y \ge 0$, $f \ge 0$
		Al	<i>L</i>	Correct, allow $y \neq 0$, $1 \neq 0$
(b)(i)	$y = \sqrt{2x + 5}$			
	$x = \sqrt{2y + 5}$	M1		$x \Leftrightarrow y$
	$x^2 = 2y + 5$	M1		Attempt to isolate, squaring first
	$y = \sqrt{2x+5}$ $x = \sqrt{2y+5}$ $x^2 = 2y+5$ $f^{-1}(x) = \frac{x^2-5}{2}$	A1	3	condone $(y =)$
	2			
(ii)	$x \geqslant 0$	B1F	1	ft their (a), but must be x
2(c)(i)	h(x) = fg(x)			
	$h(x) = fg(x)$ $= \sqrt{2\left(\frac{1}{4x+1}\right) + 5}$	B1	1	
	Y ()			
(ii)	$\sqrt{2\left(\frac{1}{4x+1}\right)+5} = 3$ $2\left(\frac{1}{4x+1}\right)+5=9$			
	$\sqrt{2} \left(\frac{4x+1}{4x+1} \right)^{+3} = 3$			
	$2\left(\frac{1}{1}\right) + 5 = 9$	M1		one correct step from (c)(i), squaring
	$2(4x+1)^{1/3}$	1411		one correct step from (e)(i), squaring
	$\frac{1}{4}$ = 2			
	4x + 1 either	A1		
	$\frac{1}{4x+1} = 2$ $4x+1 = \frac{1}{2}$ either or $16x+4=2$			
	$x = -\frac{1}{9}$ or equiv			COO
	0	A1	3	CSO
	Total (1)		10	G: 1. 0. 0. 0. 0. 10. 10.
3(a)	$\tan^{-1}\left(-\frac{1}{3}\right) = -0.32$	M1		Sight of ± 0.32 or 18.43
	. ,	A1		a correct answer AWRT
	x = 2.82, 5.96	A1 A1	3	-1 for any extra in range, ignore extra
				answers not in range.
				[SC 161.57, 341.57 AWRT M1A1
(b)	$3(\tan^2 x + 1) = 5\tan x + 5$			(max 2/3)]
(0)	$3 \tan^2 x - 5 \tan x - 2 = 0$	D.1	_	
	$3 \tan x - 3 \tan x - 2 = 0$	B1	1	AG
3(c)	$(3\tan x + 1)(\tan x - 2) = 0$	M1		Attempt at factorisation/formula
				- The state of the
	$\tan x = 2, -\frac{1}{3}$	A1		
	x = 1.11, 4.25, 2.82, 5.96 AWRT	B1		3 correct [SC $x = 1.11, 4.25 + \text{their}$
		B1	4	two answers from (a)] 4 correct, no extras in range
				[SC 161.57, 341.57, 63.43, 243.43
				AWRT B1 (max 3/4)]
	Total		8	

Q Q	Solution	Marks	Total	Comments
4(a)	50	M1		Modulus graph, 3 section, condone shape inside + outside $\pm \sqrt{50}$
		A1		Cusps + curvature outside $\pm \sqrt{50}$
	$(-\sqrt{50}) \qquad O \qquad (\sqrt{50}) \qquad x$	A1	3	Value of y and shape inside $(\pm \sqrt{50})$
(b)	$ 50-x^2 = 14$ $50-x^2 = 14$ $x^2 = 36$ $50-x^2 = -14$ $x^2 = 64$			
	$50 - x^2 = -14 x^2 = 64$	M1		Either
	$x = \pm 6, \pm 8$	A1 A1	3	2 correct, from correct working All 4 correct, from correct working
(c)	-6 < x < 6 x > 8, x < -8	B1 B1	2	
(d)	Reflect in x-axis Translate $\begin{bmatrix} 0 \\ 50 \end{bmatrix}$	M1,A1	4	$\begin{cases} \text{Reflect in } y = a \\ \text{or } \begin{cases} 0 \end{cases} \end{cases}$
		E1, B1	4	$ \begin{cases} \operatorname{Translate} \begin{bmatrix} 0 \\ 50 - 2a \end{bmatrix} \end{cases} $
				or $\begin{cases} Translate \begin{bmatrix} 0 \\ -50 \end{bmatrix} \\ Reflect in x - axis \end{cases}$
				or $ \begin{cases} Translate \begin{bmatrix} 0 \\ 2a - 50 \end{bmatrix} \end{cases} $
	Reflect in $y = 25$ scores $4/4$			Reflect in $y = a$
	Total		12	
5(a)	$2\ln x = 5$			
	$\ln x = \frac{5}{2} x = e^{\frac{5}{2}}$	B1	1	
(b)	$2\ln x + \frac{15}{\ln x} = 11$			
	$2(\ln x)^{2} - 11\ln x + 15 = 0$ $(2\ln x - 5)(\ln x - 3) = 0$	M1		Forming quadratic equation in $\ln x$, condone poor notation
	$(2\ln x - 5)(\ln x - 3) = 0$	m1		Attempt at factorisation/formula
	$ ln x = \frac{5}{2}, 3 \qquad \text{condone } 2 \ln x = 5 $	A1		_
	$x = e^{\frac{5}{2}}, e^3$	A1,A1	5	[SC for substituting $x = e^{\frac{5}{2}}$ or equivalent into equation and verifying B1 $(\frac{1}{5})$]
	Total		6	

Q	Solution	Marks	Total	Comments
6(a)	$V = \pi \int x^2 \mathrm{d}y$	B1		PI
	$V = \pi \int x^2 dy$ $V = \frac{(\pi)}{4} \int (100 - y^2) dy$	M1		$k \int (100 - y^2) dy$ may be recovered Allow $\int (\text{their } x)^2 dy$, expanded
	$= \frac{(\pi)}{4} \left[100y - \frac{y^3}{3} \right]_{(0)}^{(10)}$	A1		
	$=\frac{(\pi)}{4}\left[\frac{2000}{3}\right]$	m1		For F(10) - F(0)
	$=\frac{500\pi}{3}$	A1	5	OE CSO
				SC: if rotated about x-axis $V = \pi \left[100x - \frac{4x^3}{3} \right]_0^5 \text{ M1}$ $= \frac{1000}{3} \pi \text{ A1 max } 2/5$
(b)	$\begin{bmatrix} x & y \\ 0.5 & 9.95(0) \end{bmatrix}$			
	1.5 9.539 or better	B1		Correct x
	2.5 8.66(0) 3.5 7.141	M1		4 + correct y to 2sf
	4.5 4.359	A1		All y correct
	$A = 1 \times \sum y = 39.6$	A1	4	$(39.6 \text{ scores } \frac{4}{4})$
6(c)(i)	$\frac{dy}{dx} = \frac{1}{2} (100 - 4x^2)^{-\frac{1}{2}} (-8x)$	M1		Chain rule $\int_{0}^{1} (1-x)^{-\frac{1}{2}} \times f(x)$; allow $f(x) = k$
				$f(x) = \frac{1}{2}(-8x) = -4x$
	$x = 3 \Rightarrow \frac{dy}{dx} = -12 (100 - 36)^{-\frac{1}{2}}$	A1		
	$=-\frac{3}{2}$ or equivalent	A1	3	CSO
(ii)	$y - 8 = -\frac{3}{2}(x - 3)$	M1		$y - 8 = \left(\text{their } \frac{\mathrm{d}y}{\mathrm{d}x}\right)(x - 3)$
				or $y = \left(\text{their } \frac{dy}{dx}\right)x + c \text{ and subst. (3,8) to}$ find c
	(2y-16=-3x+9) $2y+3x=25$			
	2y + 3x = 25	A1	2	AG; all correct with no slips, full marks in part (i)

MPC3

MPC3		I		
Q	Solution	Marks	Total	Comments
6(d)	$x = 0$ $y = \frac{25}{2}$ or equivalent	B1		
	$y = 0 \qquad x = \frac{25}{3}$	B1		OE
	Area of $\Delta = \frac{1}{2} \times \frac{25}{2} \times \frac{25}{3}$	M1		$\int \frac{1}{2} (\text{their } y) \times (\text{their } x) \text{ or } \frac{1}{2} ab \sin C$
	Area = Area Δ – (b) Required area = 12.5 AWRT	m1 A1	5	PI $\Delta > (b)$ Condone 12.4 AWRT
(d)	Alternative			
	Area $\Delta = \int_{0}^{\frac{25}{3}} \frac{1}{2} (25 - 3x) (dx)$	(B1) (B1)		
	$= \frac{1}{2} \left[25x - \frac{3x^2}{2} \right]_0^{\frac{25}{3}}$ $\frac{1}{2} \left[\frac{625}{3} - \frac{625}{6} \right]$	(M1)		For integration and $f(\frac{25}{3}) - f(0)$
	$=\frac{625}{12}$			
	Total		19	
7(a)				
	$u = \ln t \frac{\mathrm{d}v}{\mathrm{d}t} = t - 1$	M1		Differentiate + integrate, correct direction
	$\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{1}{t} \qquad v = \frac{t^2}{2} - t$	A1		All correct
	$\int = \left(\frac{t^2}{2} - t\right) \ln t - \int \left(\frac{t^2}{2} - t\right) \times \frac{1}{t} (dt)$			
	$= \left(\frac{t^2}{2} - t\right) \ln t - \int \left(\frac{t}{2} - 1\right) (dt)$ $= \left(\frac{t^2}{2} - t\right) \ln t - \frac{t^2}{4} + t(+c)$	A1		Condone missing brackets
	$= \left(\frac{t^2}{2} - t\right) \ln t - \frac{t^2}{4} + t(+c)$	A1	4	CAO

MPC3 (cont	Solution	Marks	Total	Comments
7(a)	Alternative			
	$\int (t-1) \ln t$	(M1)		$u = \ln t v' = (t-1)$
		(A1)		$u' = \frac{1}{t} v = \frac{\left(t - 1\right)^2}{2}$
	$\int = \frac{(t-1)^2}{2} \ln t - \int \frac{(t-1)^2}{t} \frac{1}{t} dt$			
	$\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \int \frac{t^2 - 2t + 1}{t} dt$			
	$\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \int t - 2 + \frac{1}{t} dt$	(A1)		
	$\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \left[\frac{t^2}{2} - 2t + \ln t \right]$	(A1)		
	$= \frac{t^2}{2} \ln t - t \ln t + \frac{1}{2} \ln t - \frac{t^2}{4} + t - \frac{1}{2} \ln t$			
	$= \left(\frac{t^2}{2} - t\right) \ln t - \frac{1}{4} t^2 + t + c$		(4)	
(b)	t = 2x + 1			
	$dt = 2 dx \text{ (RHS)}$ $2x = t - 1,$ $\int = \int 2(t - 1) \ln t \frac{dt}{2}$	M1		$\frac{\mathrm{d}t}{\mathrm{d}x} = 2 \text{ (LHS)}$
	2x = t - 1,	m1		OE
	$\int = \int \mathfrak{Z}(t-1) \ln t \frac{\mathrm{d}t}{\mathfrak{Z}}$	A1	3	AG
(c)	$[x]_0^1 = [t]_1^3$	M1		Limit becoming 3
	$\int = \left[\left(\frac{t^2}{2} - t \right) \ln t - \frac{t^2}{4} + t \right]_1^3$			
	$= \left[\left(\frac{9}{2} - 3 \right) \ln 3 - \frac{9}{4} + 3 \right] - \left[0 - \frac{1}{4} + 1 \right]$	m1		Correctly sub. 1,3 into their (a)
	$= \frac{3}{2} \ln 3$ or	A1	3	CSO
	$\int = \left[\left(\frac{(2x+1)^2}{2} - (2x+1) \right) \ln(2x+1) - \frac{(2x+1)^2}{4} + (2x+1) \right]_0^1$	(M1)		Condone 1 slip
	$= \left(\left(\frac{9}{2} - 3 \right) \ln 3 - \frac{9}{4} + 3 \right) - \left(0 - \frac{1}{4} + 1 \right)$	(m1)		Correctly sub. 0,1
	$=\frac{3}{2}\ln 3$	(A1)	(3)	CSO
	Total		10	
	TOTAL		75	

MPC3 - A	QA GCE Ma	ark Scheme	2009 June	series