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MFP2

Question 1

®i
1 Given that z = 2¢2

satisfies the equation
z4 = a(1+V31)

where a 15 real:

(a) find the value of a; (3 marks)
(b) find the other three roots of this equation, giving vour answers in the form ret
where r=>0 and —wt<f# < m. (5 marks)
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Commentary

There were many methods used for solving the first part of this question, some of which led
to incorrect answers. This candidate worked with z4 correctly to provide 16(cos 1/3 +
isinT1/3). The 16 was frequently left as 2, and another common approach was to rewrite a(1+
3l) in exponential form, but this approach sometimes led to an incorrect value of a due to
poor arithmetic. The values of z in part (b) were written down with clarity and care. There
were many incorrect different expressions for 1 i/12 +2kmi/4 but not only did the candidate
write the roots out in full, but he made sure that they were written in the correct range and

that the magnitude of each root was still 2.
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Question 2

2 (a) Given that

1 A B

421 2r 1{21'{1

find the values of 4 and B. (2 marks)

ib) Use the method of differences to show that

H

1 n
2:4}.2 1 2n+1 (3 marks)
=1
<
() Find the least value of n for which Z 3 differs from 0.5 by less than 0.001 .
— 4r 1

(3 marks)
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Commentary

This candidate shows clear methods for all parts of the question.In particular, (as part (a) was
completely correctly done by virtually all candidates) sufficient rows were written down by the
candidate to show the cancellation. Sometimes rows were written as

1/2(2-1) — 1/2(2+1) followed by 1/2(4-1) — 1/2(4+1) with cancellations. Part (c) was
particularly well done with the use of inequalities (not often used) and the number rounded up
at the end to 250 (again not always seen).
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Question 3

MFP2

3 The cubic equation

where p and g are real, has a root @ =2 —31.
(a) Write down another non-real root, /i, of this equation.
ib) Find:

(1) the value of af;

(ii) the third root, ¢, of the equation;

(iii}) the values of p and 4.

(1 mark)

{1 mark)
(3 marks)

(3 marks)
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Commentary

errors of sign in the evaluation of p and g.

Although many candidates were awarded full marks for this question, this candidate
produced one of the best most concise solutions completely correct. Part (b)(i) was not
always correct. (2+31)(2-3i) produced a number of answers, but here the intermediate step of
4-9i 2 (not always evident) helped with the accuracy. In (b)(iii) the work was impressive, with
appropriate signs to hand right from the start. Errors when they did occur in this part were
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Question 4

MFP2

4 (a) Sketch the graph of y = tanh x.

(2 marks)

(b) Given that w = tanhx, use the definitions of sinhx and coshx in terms of e* and e™*

to show that

1 14+ u
.r:E]n -

3sech’x + Ttanhx = 5

(¢c) (i) Show that the equation

can be written as
3tanh®x — Ttanhx + 2 =0
{11) Show that the equation
3tanh®x — Ttanhx 42 =0

has only one solution for x.

Find this solution in the form ];]n a, where a is an integer.

(6 marks)

(2 marks)

(5 marks)
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Commentary

Sketches in part (a) were poor in general. Although this candidate had some idea of the
general shape of the curve the diagram shows the curve running along its asymptotes rather
than approaching them. Also the appearance of 1 on the diagram (a common occurrence)
suggests some confusion between trigonometrical and hyperbolic functions.Again in part (b),
as was commonly the case,after expressing tanhx in terms of e, poor algebraic techniques
prevented the candidate from completing this part.Part (c)(i) was almost always completed
correctly as was the solution of the ensuing quadratic equation, but in this case the
candidate failed to see the relevance of the sketch to the rejection of tanhx = 2, but waited

until %2 In(-3) was arrived at.
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Question 5

MFP2

5 (a) Prove by induction that, if n is a positive integer,
(cos @ +isin@)" = cosnd + isinnf
ib) Hence, given that
z=costh 4 1sinfl
show that

1
- — .
"+ = 2 cosnfl

= \.E find the value of

By | e

(c) Given further that z 4

1

10
2041

i marks)

(3 marks)

(4 marks)
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Commentary

An excellent proof by induction. Because candidates knew the result to be arrived at for
n=k+1 was cos(k+1)O +isin(k+1)®©, many candidates wrote down the answer without
sufficient intermediate working. In this case, the candidate went into considerable detail when
evaluating (cosk@+isink®)(cos®©+isin®) even to the extent of quoting the trigonometrical
formulee.Also the explanation of the inductive process was clearly expressed. In part (b) the
candidate demonstrated that (cos@+isin@)—-" was cosn® — isinn®© rather than merely quoting
the result as happened in many cases.
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Question 6

6 (a) Two points, 4 and B, on an Argand diagram are represented by the complex numbers
2431 and —4 — 51 respectively. Given that the points 4 and B are at the ends ol a
diameter of a circle €, express the equation of Cy in the form |z -z | = k.

(4 marks)

(b) A second circle, (4, is represented on the Argand diagram by the equation

|z—5+4i =4. Sketch on one Argand diagram both ) and G, . (3 marks)

ic) The points representing the complex numbers zq and z5 lie on O and &5 respectively
and are such that |z — z, | has its maximum value. Find this maximum value, giving
your answer in the form a + b/5. (5 marks)
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Commentary

This candidate is selected because overall the solution was good, clear and with a neat
diagram. The candidate did not (as many did) confuse radius with diameter, but on the other
hand, for the coordinates of the centre wrote (-1,-i) a common misunderstanding. The scale
on the y-axis of the sketch did not contain i, as did many diagrams and the sketch was
reasonably accurate with circles drawn using compasses. Many sketches had circles looking
like anything but circles with candidates trying to plot points on their diagram and then joining
up their points freehand. The final part of the question was well done with clear
demonstration of the distance to be calculated, together with the method of showing how it
was to be done.

Mark Scheme

6(a) | Centre —1-1 or (-1 -1) Bl
. Ml : _
Radms 5 AIF ft incorrect centre if used
|z+1+i] =5 or |2—(-1-1)|=5 AIF | 4 | f |z+1+i|=10 cams MOBI
®)
¢,
g e
i 1) {
(o !
[(5,-<)
€, correct centre. correct radius B1E ft errors in (a) but fit circles need to
mtersect and C, enclose ({J,O]
C, correct centre, correct radius Bl
Touching x-axis BIF 3 error in plotting centre
NS allow 1f circles musplaced but
— g /
© | 0.0,=35 MIAL 00, is stll 345
Correct length identified ml
Length 1s 9+35 iﬁr 5 ft 1f 7 15 taken as 10
Total 12




Question 7

MFP2

7 The diagram shows a curve which starts from the point 4 with coordinates (0, 2). The curve

is such that, at every point P on the curve,

dy
= =¥

de 2

where s is the length of the arc AP.

Y oa
A(0, 2)
i) .

(a) (i) Show that

et RS
(ii) Hence show that
x
= 2sinh=
§ ...h]l'lhz

{111} Hence lind the cartesian equation of the curve.

(b)  Show that

(3 marks)

(4 marks)

(3 marks)

(2 marks)
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Cuestion
number
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Commentary

The candidate starts off well with ds/dx = V(1+(dy/dx)?). Many candidates started with
s=[N(1+(dy/dx0?) dx but left the dx off or replaced it by ds.A common error in part a(ii) was to
assume the answer in order to prove the result ie 2sinh(x/2) was substituted for s in ds/dx in
order to prove that s=2sinh(x/2) at the end.In part (a)(ii), even when variables were separated
as was intended for this part of the question, very few candidates indeed considered the
constant of integration but just assumed that it was zero.The same applied to part (a)(iii) with
no consideration being given to the constant of integration.Finally part (b) was well done.
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