General Certificate of Education June 2005 Advanced Subsidiary Examination

AQA

MATHEMATICS Unit Mechanics 1A

MM1A/W

Thursday 16 June 2005 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MM1A/W.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should be given to three significant figures, unless stated otherwise.
- Take $g = 9.8 \,\mathrm{m \, s^{-2}}$, unless stated otherwise.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- Unit Mechanics 1A has a written paper and coursework.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

1 A train travels along a straight horizontal track between two points A and B.

Initially the train is at A and moving at $15 \,\mathrm{m\,s^{-1}}$. Due to a problem, the train has to slow down and stop. At time t = 40 seconds it begins to move again. At time t = 120 seconds the train is at B and moving at $15 \,\mathrm{m\,s^{-1}}$ again.

The graph below shows how the velocity of the train varies as it moves from A to B.

- (a) Use the graph to find the total distance between the points A and B. (4 marks)
- (b) The train should have travelled between A and B at a constant velocity of $15 \,\mathrm{m\,s^{-1}}$.
 - (i) Calculate the time that the train would take to travel between A and B at a speed of $15 \,\mathrm{m\,s^{-1}}$.
 - (ii) Calculate the time by which the train was delayed. (1 mark)
- (c) The train has mass 500 tonnes. Find the resultant force acting on the train when 40 < t < 120.
- 2 Two particles, A and B, are moving in the same direction along a straight line. Particle A has mass 8 kg and speed 8 m s⁻¹. Particle B has mass 12 kg and speed 6 m s⁻¹. The two particles collide.

- (a) If, during the collision, the two particles coalesce, find the speed of the combined particle.

 (3 marks)
- (b) If, after the collision, particle A continues to move in the same direction at $6.5 \,\mathrm{m\,s^{-1}}$, find the speed of B after the collision. (3 marks)

- 3 An aeroplane is heading due east at $200 \,\mathrm{m\,s^{-1}}$ relative to the air. A wind is blowing due north at $30 \,\mathrm{m\,s^{-1}}$.
 - (a) Find the magnitude of the resultant velocity of the aeroplane. (3 marks)
 - (b) Find the bearing on which the aeroplane actually travels. (3 marks)
- **4** Two particles, A of mass 5 kg and B of mass 9 kg, are attached to the ends of a light inextensible string. The string passes over a light smooth pulley as shown in the diagram. The particles are released from rest at the same height.

- (a) By forming an equation of motion for each particle, show that the magnitude of the acceleration of each particle is $2.8 \,\mathrm{m\,s^{-2}}$. (5 marks)
- (b) Find the tension in the string.

(2 marks)

(c) When B has been moving for 0.5 seconds it hits the floor. Find the height of A, above the floor, at this time. Assume that A is still below the pulley when B hits the floor.

(4 marks)

- 5 An arrow is fired horizontally with a speed of 30 m s⁻¹ from a height of 2 m above ground level. Model the arrow as a particle which does not experience air resistance.
 - (a) Show that the time taken for the arrow to hit the ground is 0.639 seconds, correct to three significant figures. (4 marks)
 - (b) Find the horizontal distance travelled by the arrow.

(2 marks)

- (c) Describe what happens, during the flight of the arrow, to the magnitude of:
 - (i) the horizontal component of the velocity;
 - (ii) the vertical component of the velocity.

(2 marks)

- 6 A particle moves on a smooth horizontal surface with acceleration $(3\mathbf{i} 5\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-2}$. Initially the velocity of the particle is $4\mathbf{j}\,\mathrm{m}\,\mathrm{s}^{-1}$.
 - (a) Find an expression for the velocity of the particle at time t seconds. (2 marks)
 - (b) Find the time when the particle is travelling in the i direction. (2 marks)
 - (c) Show that when t = 4 the speed of the particle is $20 \,\mathrm{m \, s^{-1}}$. (4 marks)
- 7 A rough slope is inclined at an angle of 10° to the horizontal. A particle of mass 6 kg is on the slope. A string is attached to the particle and is at an angle of 30° to the slope. The tension in the string is 20 N. The diagram shows the slope, the particle and the string.

The particle moves up the slope with an acceleration of $0.4 \,\mathrm{m\,s^{-2}}$.

- (a) Draw a diagram to show the forces acting on the particle. (1 mark)
- (b) Show that the magnitude of the normal reaction force is 47.9 N, correct to three significant figures. (4 marks)
- (c) Find the coefficient of friction between the particle and the slope. (6 marks)

END OF QUESTIONS