General Certificate of Education June 2005 Advanced Level Examination

MATHEMATICS Unit Further Pure 4

MFP4

Wednesday 22 June 2005 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the **blue** AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP4.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P80495/0605/MFP4 6/6/6/ MFP4

Answer all questions.

1 Solve the simultaneous equations

$$2x + 7y - 3z = 5$$

 $3x + y + 3z = 10$
 $8x + 6y = 7$ (4 marks)

2 (a) Find cartesian equations for the line with vector equation

$$\mathbf{r} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 6 \\ 3 \end{bmatrix}$$

giving your answer in the form $\frac{x-a_1}{b_1} = \frac{y-a_2}{b_2} = \frac{z-a_3}{b_3}$. (3 marks)

- (b) Determine the direction cosines of this line. (2 marks)
- 3 (a) Evaluate the determinant of the matrix $\mathbf{M} = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 3 & 1 \\ 4 & 0 & -5 \end{bmatrix}$. (2 marks)
 - (b) A three-dimensional shape S, with volume 12 cm^3 , is transformed by a transformation having matrix \mathbf{X} . Find the volume of the image of S in the case when:

(i)
$$\mathbf{X} = \mathbf{M}$$
; (2 marks)

- (ii) $\mathbf{X} = \mathbf{M} \mathbf{N}^2$, where \mathbf{N} is a 3 × 3 matrix and det $\mathbf{N} = \frac{1}{3}$. (2 marks)
- 4 (a) Describe the transformation given by each of the matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (4 marks)

- (b) (i) Determine the matrix **AB**. (2 marks)
 - (ii) Given that **AB** represents a rotation, find the axis of rotation and the magnitude of the angle of rotation. (2 marks)

5 The points A, B and C have position vectors

$$\mathbf{a} = \mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$$
, $\mathbf{b} = 3\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{c} = 5\mathbf{i} - 3\mathbf{j} - 3\mathbf{k}$

respectively.

- (a) Write down the vectors \overrightarrow{AB} and \overrightarrow{AC} . (2 marks)
- (b) Find, in the form $\mathbf{r} \cdot \mathbf{n} = d$, a vector equation for the plane ABC. (4 marks)
- (c) Determine, to the nearest 0.1°, the acute angle between the plane ABC and the line with equation $\mathbf{r} = \mathbf{a} + t(5\mathbf{i} + \mathbf{j} + \mathbf{k})$.
- 6 (a) (i) Explain why $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}) = 0$ for all vectors \mathbf{a} and \mathbf{b} . (2 marks)
 - (ii) Hence show that

$$\mathbf{a} \cdot (\mathbf{b} \times (\mathbf{c} + \mathbf{a})) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

for all vectors **a**, **b** and **c**.

(2 marks)

- (b) The points P, R and S have position vectors $\mathbf{p} = 3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$, $\mathbf{r} = 2\mathbf{i} 5\mathbf{j} + 2\mathbf{k}$ and $\mathbf{s} = 7\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ respectively, relative to the origin O.
 - (i) Evaluate $\mathbf{p} \cdot (\mathbf{r} \times \mathbf{s})$. (2 marks)
 - (ii) Explain why \mathbf{p} , \mathbf{r} and \mathbf{s} are linearly independent. (1 mark)
 - (iii) The parallelepiped *OPQRSTUV* is shown in the diagram.

Write down the volume of the parallelepiped.

(1 mark)

(iv) Use the result of part (a)(ii) to show that

$$\mathbf{p.}(\mathbf{r} \times \mathbf{t}) = \mathbf{p.}(\mathbf{r} \times \mathbf{s})$$

where \mathbf{t} is the position vector of T.

(2 marks)

7 The transformation T is a stretch in a fixed direction, and maps the point (x, y) to the image point (x', y'), where

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 6.4 & -7.2 \\ -7.2 & 10.6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

(a) Determine the scale factor of the stretch.

(2 marks)

- (b) By considering the invariant points of T, or otherwise, find an equation for the line of invariant points of T, giving your answer in the form y = mx. (5 marks)
- 8 (a) Show that (a+b+c) is a factor of

$$\begin{vmatrix} a & b & c \\ b+c & c+a & a+b \\ b-c & c-a & a-b \end{vmatrix}$$

Express this determinant as the product of (a + b + c) and a quadratic factor.

(5 marks)

(b) Hence, or otherwise, show that there is a single real value of a for which the system of equations

$$ax + 3y + z = -5$$

 $4x + (1+a)y + (a+3)z = 9$
 $2x + (1-a)y + (a-3)z = 15$

does not have a unique solution, and find this value of a.

(5 marks)

- **9** The matrix **M** is given by $\begin{bmatrix} 2 & 7 \\ 4 & k \end{bmatrix}$, where k is a constant. It is given that the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of **M**.
 - (a) Show that k = 5 and find the eigenvalue corresponding to the eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

 (3 marks)
 - (b) Determine the second eigenvalue of M and find a corresponding eigenvector. (5 marks)
 - (c) Write down matrices **U** and **D**, having integer elements, such that **M** can be expressed in the diagonalised form $\mathbf{M} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}$.
 - (d) Write down the matrix U^{-1} . (1 mark)
 - (e) The matrix \mathbf{M}^{2n} , for positive integers n, is such that

$$\mathbf{M}^{2n} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

for integers a, b, c and d. Show that

$$a = p \times 4^n + q \times 81^n$$

where p and q are rational numbers to be determined.

(4 marks)

END OF QUESTIONS

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE