Surname	Centre Number	Candidate Number
Other Names		2

GCE A level

1214/01

GEOLOGY - GL4 Interpreting the Geological Record

P.M. MONDAY, 6 June 2016

2 hours

	For Exa	aminer's us	e only
	Question	Maximum Mark	Mark Awarded
Section A	1.	15	
	2.	15	
	3.	15	
	4.	15	
Section B	5.	11	
	6.	17	
	7.	12	
ed:	Total	100	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- the Geological Map Extract (Kirkcaldy);
- a hand-lens or magnifier to study the map (optional);
- · a calculator:
- · a protractor.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Candidates are reminded that marking will take into account the quality of communication used in their answers.

SECTION A

Answer all questions in the spaces provided.

This section should take approximately 1 hour to complete.

 Figure 1a is a geological section showing two igneous bodies (A and B) which occur within a sedimentary rock sequence. Figure 1b shows a vertical section of structures within igneous body A. Figure 1c shows details of the composition and texture at four selected depths between P-Q across igneous body B in Figure 1a.

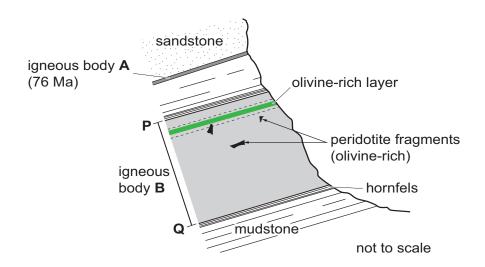


Figure 1a

hammer 30 cm

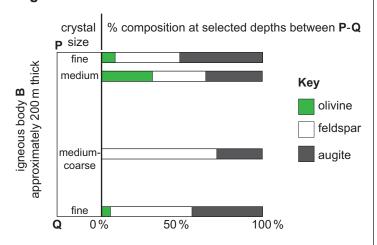


Figure 1b Figure 1c

- (a) Refer to Figure 1a and Figure 1b.
 - (i) Identify the structures within igneous body **A** (**Figure 1b**) and explain their origin. [2]

Structures Origin

© WJEC CBAC Ltd.

(1214-01)

214		
	_	

	(ii) 	Using evidence from Figure 1b alone, draw an arrow labelled Y (← Y) on Figure 1a to show the youngest sedimentary rock unit in the sequence. Explain your answer. [3]
(b)	(i)	With reference to Figure 1a and Figure 1c , describe the distribution of olivine within igneous body B . [3]
	(ii)	Explain the presence and location of the olivine-rich layer within the upper part of igneous body B . [4]
(c)	Drav	ous body A has a radiometric age of 76 Ma. w an arrow labelled X (← X) on Figure 1a where a specimen of igneous rock might DLDER than 76 Ma. Explain your answer. [3]

15

2. **Figure 2a** shows photomicrographs of two sedimentary rocks (rocks **A** and **B**). **Figure 2b** is a triangular graph on which the composition of rock **A** has been plotted.

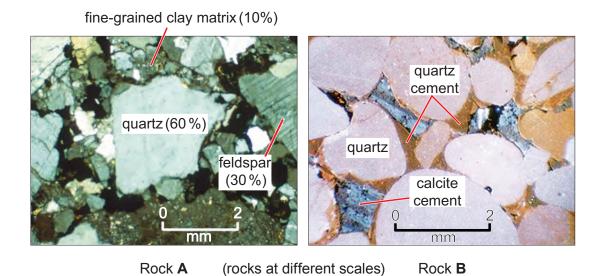
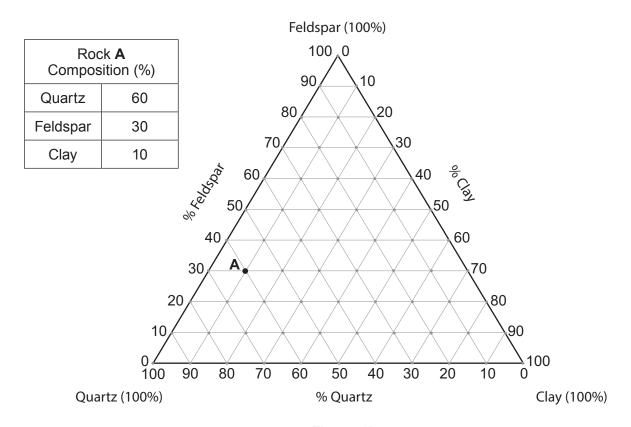
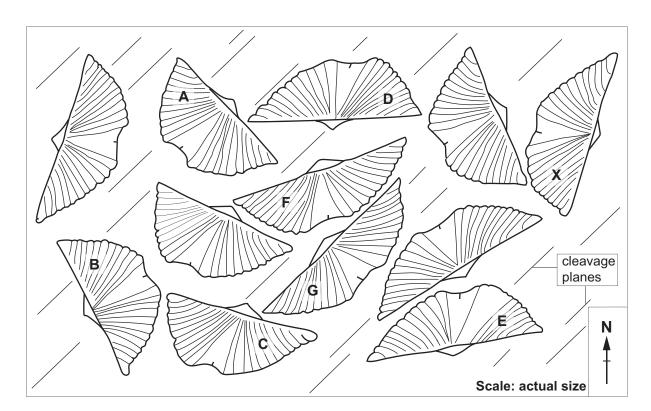
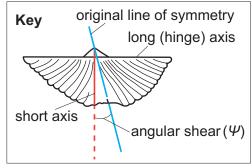


Figure 2a


Figure 2b

	ĸ
4	
\leftarrow	
2	$\overline{}$

		te two differences in texture between rocks A and B in Figur lain why the textures differ.	r e 2a . [4]	Examiner only
Diffe	rence)		
Diffe	rence)		
Expl	anatio	on		
(b)	(i)	The composition of rock B before lithification was 95% qua Plot this composition on Figure 2b and label with the letter		
	(ii)	Draw an arrow from point A on Figure 2b to show how rock A might change over time if it were subjected to intensin a tropical climate.		
	(iii)	Explain the changes in composition you have identified in ((b) (ii). [3]	
(c)	State	te in which of the following environments of deposition you	would most likely find	121
(9)	sedi Cho	iments similar to those of rocks A and B being deposited toda cose one environment only from the list below for rock A and o to the appropriate rock letter (A or B).	ıy.	
		The appropriate restricted (x to 2).	[2]	1
	E	Rock A or E Choose one environment	3	1
	E	Rock A or E	3	1
	E	Rock A or E Choose one environment	3	1
		Rock A or E Choose one environment beach (marine)	3	1
		Rock A or E Choose one environment beach (marine) coral lagoon	3	1

3. Figure 3 shows deformed fossil brachiopods of the **same** species preserved on a bedding surface within cleaved shale. **Table 3** shows data collected from the specimens.

Angular shear (ψ) = the change in angle between the short axis (a line at 90° to the long, hinge axis) and the original line of symmetry

Figure 3

Brachiopod letter	Long (hinge) axis (mm)	Short axis (mm) (at 90° to long axis)	Long : short axis ratio	Angular shear (ψ)
Α	38	19	2.0	0°
В	40	19	2.1	6°
С	41	19	2.2	15°
D	46	18	2.6	17°
E	47	16	2.9	17°
F	48	16	3.0	12°
G	51	15	3.3	0°
Х		17		

Table 3

© WJEC CBAC Ltd.

(1214-01)

Refer to	Figure	3.

(a)	(i)	Describe, with reasons, the possible environment in which the shale was dep	osited. [2]
	(ii)	The evidence suggesting that the fossil brachiopods on this bedding plane reparalife or death assemblage is conflicting. Critically evaluate the statement that suggests "the brachiopods represent a life assemblage".	
(b)		plete Table 3 .	with the
	(i)	Measure the long (hinge) axis of brachiopod X and express this as a ratio we short axis.	[2]
	(ii)	Measure the angular shear (ψ) of brachiopod X .	[1]
(c)	Refe	er to Figure 3 and Table 3 .	
	(i)	State the letter of one fossil brachiopod that shows bilateral symmetry. **Brachiopod** **	[1]
	(ii)	Describe the differences in the way in which brachiopods A and G have deformed.	e been [2]

(iii)	A student concluded that the deformation of this bed was:	onl
	"consistent with an east-west crustal shortening with a minimum principal stress direction from the north-south".	
	Critically evaluate the evidence for this statement. [4]	

15

Examiner

BLANK PAGE

4. Figure 4 shows the changes in diversity of marine fauna (Sepkoski's curves) during the Phanerozoic along with the arrangement of continents over the same time.

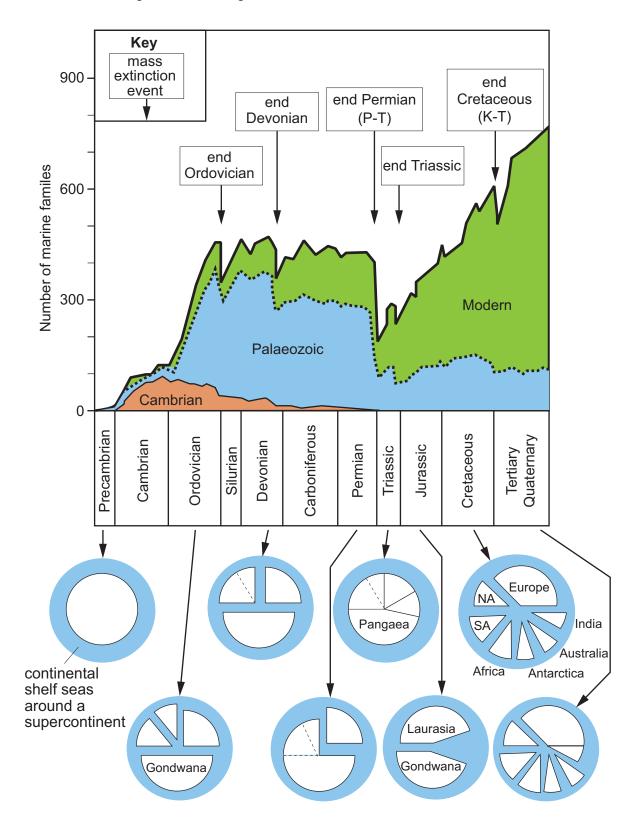


Figure 4

- Name the most abundant Phanerozoic fauna (Cambrian, Palaeozoic or Modern) (a) that existed during the Mesozoic era.
 - Complete **Table 4** below with the following. (ii)
 - The percentage of marine families that became extinct during the end 1. Cretaceous (K-T) extinction. Show your working in the space provided.
 - The name of the mass extinction at which approximately 51% of marine 2. families became extinct.

Extinction events	Percentage of marine families extinct
	Working
end Cretaceous (K-T)	•
	<i>Answer</i> = %
•	51 %

Table 4

(b)		plain why the small number of families recorded in the late Precambrian may essarily reflect the abundance of life at that time.	not [3]
(c)	(i)	Describe the relative change in the area of continental shelf seas in Figu between the Precambrian and the end of the Carboniferous.	re 4 [2]

Turn over. © WJEC CBAC Ltd. (1214-01)

Describe the correlation between changes in the diversity of marine organisms and the breakup of the continents following the end Permian (P-T) mass extinction. [2]	
"Changes in the proportion of continental shelf seas were responsible for the diversity of marine fauna through geological time." Critically evaluate this statement.	
	"Changes in the proportion of continental shelf seas were responsible for the diversity of marine fauna through geological time."

BLANK PAGE

SECTION B

Questions 5 - 7 relate to the **British Geological Survey 1:50 000 geological map** extract of **Kirkcaldy (Sheet 40E)**

Answer all questions in the spaces provided.

This section should take approximately 1 hour to complete.

- 5. (a) With reference to the cross-section, state the
 - maximum thickness
 - maximum depth

of the quartz dolerite (qD) beneath sea-level (OD) on the axis of the Leven Syncline.

Maximum thickness on the Leven Syncline	•	m
Maximum depth on the Leven Syncline	•	m

[2]

- (b) The quartz dolerite (**qD**) that crops out in **Box A** on the **geological map** is interpreted as the surface outcrop of a sill.
 - (i) Complete **Figure 5** by stating the **two** rock types you might predict to find **in the field** at the upper boundary of the sill in **Box A**. [2]

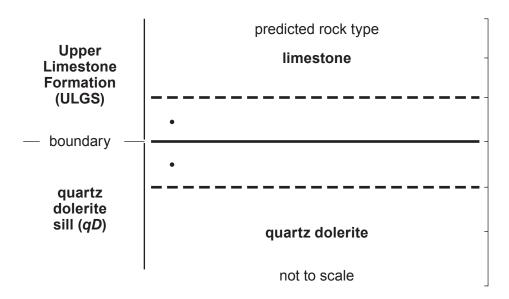


Figure 5

	(ii) 	From your knowledge , explain why an igneous body made of quartz dolerite is more likely to be associated with an intrusion than a lava flow.	(qD) [2]
	(iii)	Critically evaluate the evidence from the geological map and cross-section suggests the quartz dolerite (qD) forms a sill rather than a dyke.	that [3]
(0)	"The	auartz dalarita (aD) sill was partly intruded along faults "	
(c)		cally evaluate the evidence from the cross-section for this statement.	[2]

11

6. Figure **6** is a copy of the **geological map**.

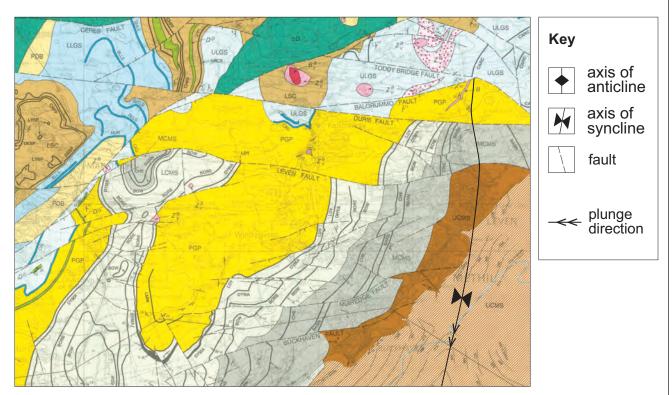


Figure 6

Refer to the geological map, generalised geological column and Figure 6.

- (a) (i) On **Figure 6**, draw in the axial plane trace of a *plunging anticline*. Use the symbol in the key to indicate the direction of plunge of this fold. [2]
 - (ii) Describe the **evidence** that enables identification of the following fold characteristics. [2]

1.	Anticline
2.	Direction of plunge

- (b) A student incorrectly concluded that the Durie Fault (GS 3602) showed strike slip movement to the right (dextral). Give two pieces of map evidence that show this interpretation to be incorrect.
- 1.

 2.

Using the **geological map** and **cross-section**, describe the general characteristics of the Buckhaven Fault that crops out in **grid square 3698** by completing **Table 6** below. (c)

Buckhaven Fault characteristics							
Dip angle	varies with depth						
Strike direction	•						
Downthrow side	•						
Hanging wall	•						
Fault type	•						

Table 6

(d)	The cross-section shows the base of the Upper Coal Measures (UCMS) to the east of
	the Buckhaven Fault is approximately aligned with the Chemiss coal (CHE) of the Middle
	Coal Measures (MCMS) to the west.

(i)	Using the g	generalised	geological	column	only,	calculate	the	throw	(vertical
	displacemen	nt) of the Buc	khaven Faul	t. Show y	our wo	orking.			[2]

																			7	hro	w=	:						m
	(ii)	[Des	crib	e ho	w d	ispl	ace	eme	ent	t oı	n th	ne I	Bu	ckł	nav	/en	Fa	ault	va	ies	wi	th	dep	oth.	·		[2]

(e)		Le tio	ven n a	Sy nd	nclir gen	ne o era l	n la i se	and d g	aı ye c	nd olo	be gi	ene cal	ath c c	n th olu	ne I m i	Fir	th	òf	Fo	rth	Es	tua	ry.	Ús	sing	th th	e cı	vithir ross that [3]

7. Figure 7a is a model showing coal-bearing strata on the limb of a plunging fold. Table 7 gives details of the conditions needed to dispose of carbon dioxide (sequestration) in coal-bearing strata.

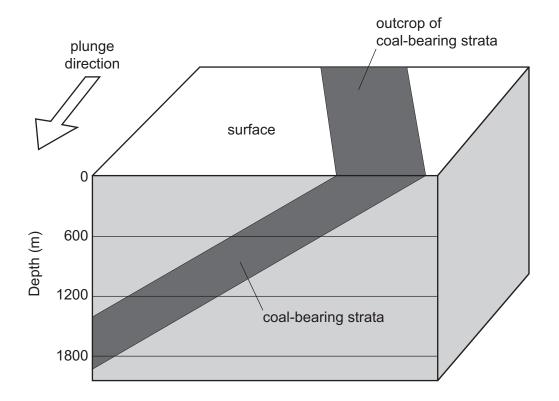


Figure 7a

CO₂ sequestration

The long-term disposal of carbon dioxide (CO_2) by pumping liquefied gas into deeply buried coal seams (over 1200 m deep) is an option for reducing atmospheric CO_2 levels. CO_2 binds strongly to the surfaces within coal where it is stored.

Table 7

- (a) Shade and label the **top surface** of **Figure 7a** to show the area below which there is potential for CO_2 sequestration. [2]
- (b) Figure 7b is a photo of a typical specimen of Carboniferous coal.

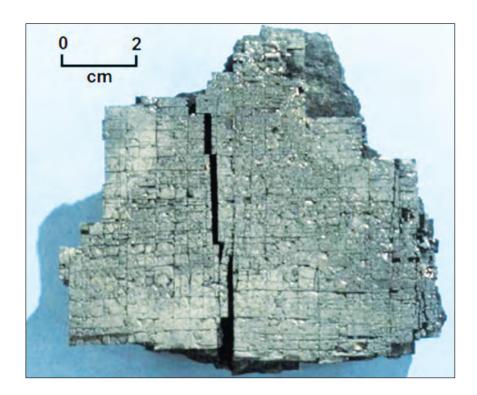


Figure 7b

Refer to Figure 7b.

(i)	Describe the structures within the specimen of coal.								
•••••									
(ii)	Explain why the structure of coal might be suitable as a host rock for sequestration.	CO ₂ [2]							

(c)	"The Carboniferous strata of the Leven Syncline provide potential for CO ₂ sequestration." Use the data in the generalised geological column , the cross-section and Table 7 to evaluate this statement. [6]	Examiner only
		12

END OF PAPER

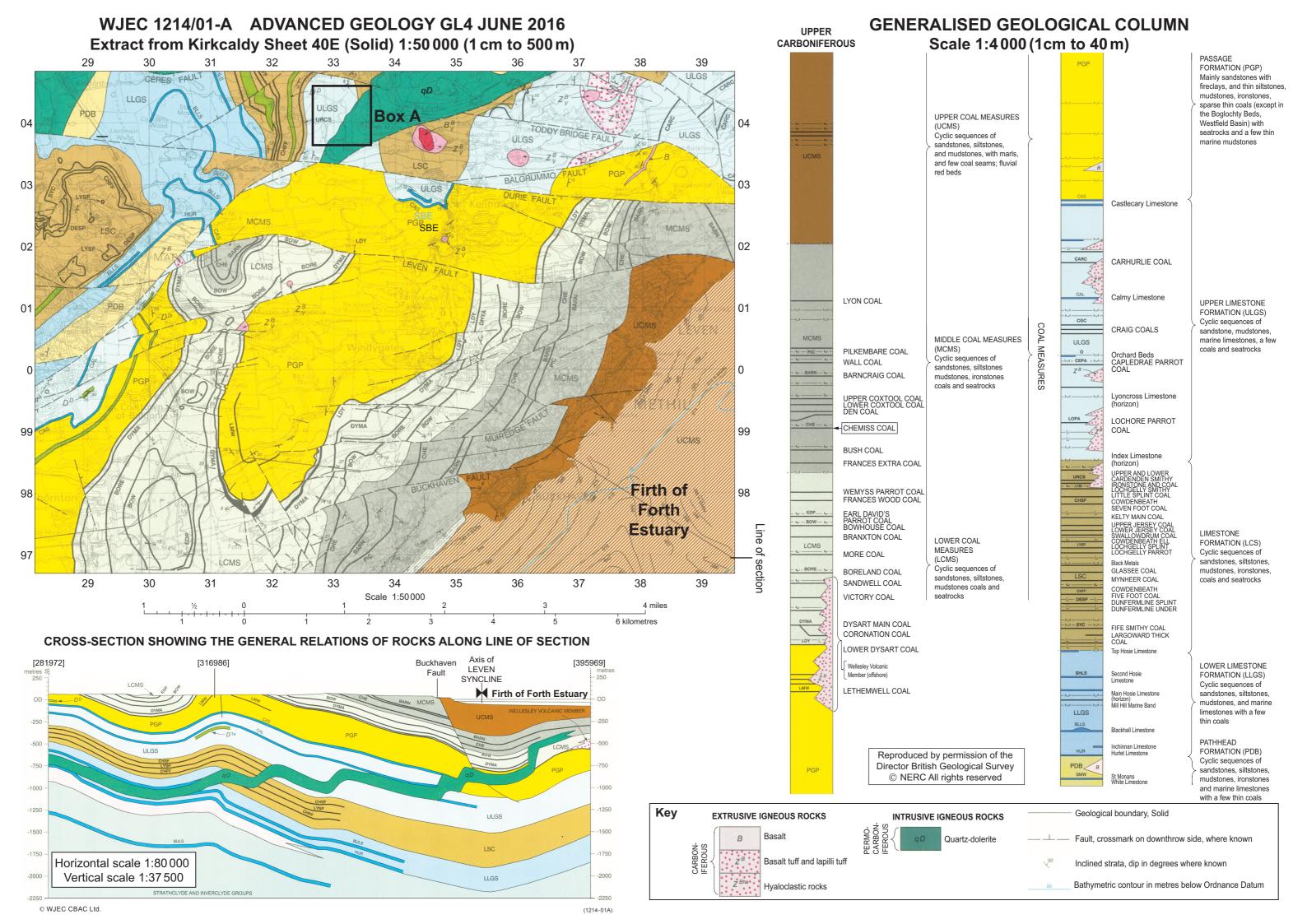
Acknowledgements

Figure 1b	http://www.cneas.tohoku.ac.jp/labs/geo/ishiwata/SendaiSympo3.htm
Figure 2a	Rock A : https://cdn-assets.answersingenesis.org/img/articles/arj/v3/uluru-fig5.jpg Rock B : http://wserv3.esc.cam.ac.uk/1acollections/items/show/176
Figure 3	adapted from Structural Geology – Twiss & Moores – W.H. Freeman 1992
Figure 4	Benton & Harper; Introduction to Paleobiology and the Fossil Record
Figure 7b	BGS: UK Coal Resource for New Exploitation Technologies, Final Report

For continuation only.	Examiner only

•••••••••••••••••••••••••••••••••••••••

GCE A level


1214/01-A

GEOLOGY – GL4 Interpreting the Geological Record

P.M. MONDAY, 6 June 2016

© WJEC CBAC Ltd. CJ*(S16-1214-01A)

