Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A level

1211/01

GEOLOGY – GL1Foundation Unit

P.M. TUESDAY, 14 January 2014

1 hour

For Examiner's use only						
Question Maximum Mark Awarded						
1.	17					
2.	11					
3.	14					
4.	18					
Total	60					

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- · the Mineral Data Sheet;
- · a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions in the spaces provided in this booklet.

There an queenene in the epacee provided in the beente

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that marking will take into account the use of examples and the quality of communication used in your answers.

Answer all questions.

 Figure 1a is a cross-section through a sill formed by the intrusion of two igneous bodies composed of rocks A and B. Figure 1b shows the variation in crystal size of the groundmass through the igneous bodies. Figure 1c shows a sample of rock A collected from locality A on Figure 1a.

Figure 1a Figure 1b

	c
$\overline{}$	
$\overline{}$	
2	7
-	C

(a)	Explain why the igneous bodies in Figure 1a have been correctly identified as forming a sill rather than a dyke. [1]					
(b)	Refe	r to Figure 1b .				
	(i)	Describe the variation in crystal size of the groundmass in igneous rock A only shown on the graph Figure 1b .				
	(ii)	Explain the variation in crystal size of the groundmass in igneous rock A only shown on the graph Figure 1b .				
	(iii)	With reference to igneous rocks A and B explain the difference in crystal size between the points labelled X and Y on Figure 1b .				
(c)	Refe	r to Figure 1c .				
	(i)	Identify mineral P in Figure 1c . You may wish to refer to the mineral data sheet. [1				
	Mine	eral P				
	(ii)	Describe the texture of igneous rock A in Figure 1c . [3				

d)	Refer to	Figures 1a and 1b.		
	Name ig	gneous rock B . Give reas	sons for your answer.	[3]
	Name o	of igneous rock B		
	Reason	s		
e)			letters A , B and C to show the relat	
	rocks in your ans		you used the evidence in Figure 1	a and Figure 1b for [3]
			Rock	
		youngest	•	
			•	
		oldest	•	
			Table 1	
	Explana	ation of evidence		
	•••••			

17

BLANK PAGE

© WJEC CBAC Ltd. (1221-01) Turn over.

2. Figure 2a shows the velocity curves of two types of seismic wave in the continental crust and upper mantle. Figure 2b is a map showing four localities E, F, G and H.

Figure 2a

Figure 2b

a)	Identify which type of seismic wave, P, S or surface, is represented by velocity curve	on on
	Figure 2a. Give reasons for your choice.	[3]

Type of wave	
Reasons	

	_
	c
$\overline{}$	
2	
-	Ċ

Refe	r to Figure 2a .
(i)	Mark in the blank column J , with an arrow labelled A (← A), a location within the asthenosphere. [1]
(ii)	Explain why the velocity of the seismic waves is relatively low at a depth of 200 km. [2]
Refe	r to Figure 2b .
	each pair of locations below, state at which locality the crust is thicker . In each case ain your answer.
(i)	Locality F and Locality H [1]
	Thicker crust at locality
	Explanation
(ii)	Locality E and Locality F [2]
	Thicker crust at locality
	Explanation
(iii)	Locality G and Locality H [2]
	Thicker crust at locality
	Explanation

11

3. Figure 3a is a geological map. **Figure 3b** shows rock **K** collected from the solid geology within the area shown on **Figure 3a**.

Figure 3a

Figure 3b

(a)	Refe	r to Figure	3a.					
	(i)	Mark with metamorp			re 3a the	direction	towards which the effect	s of regional [1]
	(ii)	Explain was alongside		ndstone	has not	undergon	e metamorphism althou	gh the schist [2]
(b)	Refe	r to Figure	3b.					
	(i)	Explain th	e origin o	f the cle	avage pla	anes in ro	ck K .	[3]
	(ii)	Tick one l					ocality A-D in Figure 3	a from which
		Location	A	В	C	D	Tick one box only	
		Reasons						

(c) Draw in **Figure 3c**, using the scale provided, the texture of a sample of marble with mean crystal size 1.5 mm. [2]

Figure 3c

(d)	It has been suggested that the area shown in Figure 3a was "once a shallow tropical into which lavas erupted". Evaluate this statement giving reasons for your answer.	sea [3]
	Evaluation	

14

BLANK PAGE

© WJEC CBAC Ltd. (1221-01) Turn over.

4. Figure 4a is a cross-section of the geology of an area of western Wales. **Figure 4b** is the Geological Column.

Data shown within the borehole represent approximate depths from the surface and are not drawn to scale.

Figure 4a

Figure 4b

Examiner only

(a)	(i)	The downthrow side of the Mochras Fault in Figure 4a has been indicated to the west of the fault. With reference to Figures 4a and 4b state the evidence that could have been used to conclude that the downthrow side of the fault is to the west. [2
	(ii)	State the type of fault movement (normal, reverse, thrust, strike-slip) shown by the Mochras Fault in Figure 4a . Give a reason for your answer. [2 Type of fault movement Reason
(b)	(i)	State the thickness of the Cenozoic rocks in the Mochras borehole in Figure 4a . [1
	(ii)	Explain why the throw of the Mochras Fault cannot be determined from the information in Figure 4a . [1

(c)	(i)	Indicate with an arrow labelled U (← U) on Figure 4a , the position of an unconformity formed less than 10 million years ago. [1]	
	(ii)	With reference to Figures 4a and 4b describe three pieces of evidence which indicate that geological boundary R on Figure 4a represents a break in the geological record. [3]	
	1.		
	2.		
	3.		

Figure 4c shows fossil M collected from the Quaternary deposit shown in Figure 4a.

Figure 4c

(a)	Refer to Figure 4c.		

	to the original shell. You may wish to refer to the Mineral Data Sheet.	[3]
(ii)	Identify the group to which fossil M belongs. Give a reason for your choice. Fossil group Reason	[2]
(iii)	Evaluate the use of fossil M in determining the environment of deposition of Quaternary deposit in which it is preserved.	the [3]

END OF PAPER

Acknowledgements

Figure 1c wildabouttheworld.com

Figure 2a tankongvtar.hu

Figure 4a www.geologywales.co.uk

Figure 4c svt premiere.s.free.Fr

GCE AS/A level

GEOLOGY MINERAL DATA SHEET FOR USE WITH GL1

January 2014

Name	Cleavage/Fracture	Hardness	Density g cm ⁻³	Streak	Lustre	Colour	Other diagnostic properties
Quartz RF	*none/conchoidal	7	2.65	scratches streak plate	vitreous	colourless, milky but variable	hexagonal prisms terminated by pyramids
Orthoclase Feldspar RF	*2 good, 90	9*	2.6	scratches streak plate	vitreous	flesh, pink, white	*simple twin
Plagioclase Feldspar RF	*2 good, 90	*6	2.7	scratches streak plate	vitreous	creamy-white, grey, colourless	*repeated multiple twin
Muscovite Mica RF	*1 perfect (basal)	*2.5	2.7-3.1	white	pearly	colourless or pale yellow, green or brown	*flaky
Biotite Mica RF	*1 perfect (basal)	*2.5-3	2.7-3.1	white	pearly	brown/black	*flaky
Hornblende RF	*2 good, 60/120	*5-6	3.0-3.5	scratches streak plate	vitreous	black, dark green	prismatic crystals
Augite	*2 good, 90	*5-6	3.2-3.5	scratches streak plate	vitreous	greenish black	prismatic crystals
Olivine	none/conchoidal	<i>2</i> -9 _*	3.2-4.3	scratches streak plate	vitreous	*olive green	
Chiastolite/ Andalusite	poor 1/ uneven fracture	7.5	3.1-3.3	scratches streak plate	vitreous	pearly grey/pink	needle crystals with square x-sections, black centre
Garnet	none	*6.5-7.5	3.5-4.3	scratches streak plate	vitreous	red/brown	*12 sided crystals - each face rhomb shaped
Chlorite	1 good (basal)	*2	2.6-2.9	white	pearly	green	fibrous/flaky as massive, tabular crystals
Calcite RF	*3 good, not at 90, perfect rhombs	£*	2.71	white	vitreous	colourless, white, tints	*effervesces with 0.5M HCl, rhombic shape
Fluorite	*4 good, parallel to octahedron	*	3.0-3.2	white	vitreous	colourless purple/green/yellow	fluoresces in uv light, cubic or octahedral crystals
Halite	3 good, 90 cubic	*2.5	2.2	white	vitreous	colourless, white, often stained	*salty taste, cubic crystals, often stained
Gypsum	1 good (basal)	*1.5-2	2.3	white	silky, pearly	colourless, white, often stained	fibrous or twinned crystals
Barites	2 good, 90	*3-3.5	*4.5	white	vitreous, resinous	white, pink	bladed crystals
Chalcopyrite	poor/conchoidal	4	4.2	*black	metallic	bronze yellow	*tarnished to peacock colours
Pyrite	none/conchoidal	*6	5.0	*greenish black	metallic	brass yellow	crystals often striated cubes
Galena	*3 good, 90 cubic	*2.5	*7.5	*lead grey	metallic	lead grey	cubic crystals
Haematite	poor/subconchoidal	*5.5-6.5	4.9-5.3	*cherry red	metallic-dull	red/black skin/steel grey	kidney shaped masses, fibrous
* - Useful property for diagnosis	for diagnosis	RF - Col	mmon rock	Common rock-forming mineral			

* - Useful property for diagnosis

This table should <u>not</u> be memorised. Marks in the outcomes of tests on minerals and, on some occasions, identification from test results.