| Surname | Centre
Number | Candidate
Number | |-------------|------------------|---------------------| | Other Names | | 2 | #### GCE AS/A level 1211/01 # **GEOLOGY – GL1**Foundation Unit P.M. TUESDAY, 14 January 2014 1 hour | For Examiner's use only | | | | | | | |-------------------------------|----|--|--|--|--|--| | Question Maximum Mark Awarded | | | | | | | | 1. | 17 | | | | | | | 2. | 11 | | | | | | | 3. | 14 | | | | | | | 4. | 18 | | | | | | | Total | 60 | | | | | | #### **ADDITIONAL MATERIALS** In addition to this examination paper, you will need: - · the Mineral Data Sheet; - · a calculator. #### **INSTRUCTIONS TO CANDIDATES** Use black ink or black ball-point pen. Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions in the spaces provided in this booklet. #### There an queenene in the epacee provided in the beente #### **INFORMATION FOR CANDIDATES** The number of marks is given in brackets at the end of each question or part-question. You are reminded that marking will take into account the use of examples and the quality of communication used in your answers. #### Answer all questions. Figure 1a is a cross-section through a sill formed by the intrusion of two igneous bodies composed of rocks A and B. Figure 1b shows the variation in crystal size of the groundmass through the igneous bodies. Figure 1c shows a sample of rock A collected from locality A on Figure 1a. Figure 1a Figure 1b | | c | |---------------|---| | | | | | | | $\overline{}$ | | | $\overline{}$ | | | 2 | 7 | | - | C | | | | | (a) | Explain why the igneous bodies in Figure 1a have been correctly identified as forming a sill rather than a dyke. [1] | | | | | | |-----|---|--|--|--|--|--| | (b) | Refe | r to Figure 1b . | | | | | | | (i) | Describe the variation in crystal size of the groundmass in igneous rock A only shown on the graph Figure 1b . | | | | | | | (ii) | Explain the variation in crystal size of the groundmass in igneous rock A only shown on the graph Figure 1b . | | | | | | | (iii) | With reference to igneous rocks A and B explain the difference in crystal size between the points labelled X and Y on Figure 1b . | | | | | | (c) | Refe | r to Figure 1c . | | | | | | | (i) | Identify mineral P in Figure 1c . You may wish to refer to the mineral data sheet. [1 | | | | | | | Mine | eral P | | | | | | | (ii) | Describe the texture of igneous rock A in Figure 1c . [3 | | | | | | | | | | | | | | d) | Refer to | Figures 1a and 1b. | | | |----|---|----------------------------------|--|-------------------------| | | Name ig | gneous rock B . Give reas | sons for your answer. | [3] | | | Name o | of igneous rock B | | | | | Reason | s | | | | e) | | | letters A , B and C to show the relat | | | | rocks in
your ans | | you used the evidence in Figure 1 | a and Figure 1b for [3] | | | | | Rock | | | | | youngest | • | | | | | | • | | | | | oldest | • | | | | | | Table 1 | | | | Explana | ation of evidence | | | | | ••••• | | | | | | | | | | | | | | | | | | *************************************** | | | | 17 ## **BLANK PAGE** © WJEC CBAC Ltd. (1221-01) Turn over. 2. Figure 2a shows the velocity curves of two types of seismic wave in the continental crust and upper mantle. Figure 2b is a map showing four localities E, F, G and H. Figure 2a Figure 2b | a) | Identify which type of seismic wave, P, S or surface, is represented by velocity curve | on on | |----|--|-------| | | Figure 2a. Give reasons for your choice. | [3] | | Type of wave | | |--------------|------| | Reasons |
 | | | | | | | | | | | | _ | |---------------|---| | | c | | $\overline{}$ | | | 2 | | | - | Ċ | | | | | Refe | r to Figure 2a . | |-------|--| | (i) | Mark in the blank column J , with an arrow labelled A (← A), a location within the asthenosphere. [1] | | (ii) | Explain why the velocity of the seismic waves is relatively low at a depth of 200 km. [2] | | | | | Refe | r to Figure 2b . | | | each pair of locations below, state at which locality the crust is thicker . In each case ain your answer. | | (i) | Locality F and Locality H [1] | | | Thicker crust at locality | | | Explanation | | | | | (ii) | Locality E and Locality F [2] | | | Thicker crust at locality | | | Explanation | | (iii) | Locality G and Locality H [2] | | | Thicker crust at locality | | | Explanation | | | | | | | | | | 11 **3. Figure 3a** is a geological map. **Figure 3b** shows rock **K** collected from the solid geology within the area shown on **Figure 3a**. Figure 3a Figure 3b | (a) | Refe | r to Figure | 3a. | | | | | | |-----|------|-----------------------|------------|-----------|-----------|------------|---------------------------------------|-----------------------------| | | (i) | Mark with metamorp | | | re 3a the | direction | towards which the effect | s of regional
[1] | | | (ii) | Explain was alongside | | ndstone | has not | undergon | e metamorphism althou | gh the schist
[2] | | (b) | Refe | r to Figure | 3b. | | | | | | | | (i) | Explain th | e origin o | f the cle | avage pla | anes in ro | ck K . | [3] | | | (ii) | Tick one l | | | | | ocality A-D in Figure 3 | a from which | | | | Location | A | В | C | D | Tick one box only | | | | | Reasons | | | | | | | | | | | | | | | | | (c) Draw in **Figure 3c**, using the scale provided, the texture of a sample of marble with mean crystal size 1.5 mm. [2] Figure 3c | (d) | It has been suggested that the area shown in Figure 3a was "once a shallow tropical into which lavas erupted". Evaluate this statement giving reasons for your answer. | sea
[3] | |-----|---|------------| | | Evaluation | | | | | | 14 ## **BLANK PAGE** © WJEC CBAC Ltd. (1221-01) Turn over. **4. Figure 4a** is a cross-section of the geology of an area of western Wales. **Figure 4b** is the Geological Column. Data shown within the borehole represent approximate depths from the surface and are not drawn to scale. Figure 4a Figure 4b Examiner only | (a) | (i) | The downthrow side of the Mochras Fault in Figure 4a has been indicated to the west of the fault. With reference to Figures 4a and 4b state the evidence that could have been used to conclude that the downthrow side of the fault is to the west. [2 | |-----|------|--| | | (ii) | State the type of fault movement (normal, reverse, thrust, strike-slip) shown by the Mochras Fault in Figure 4a . Give a reason for your answer. [2 Type of fault movement Reason | | (b) | (i) | State the thickness of the Cenozoic rocks in the Mochras borehole in Figure 4a . [1 | | | (ii) | Explain why the throw of the Mochras Fault cannot be determined from the information in Figure 4a . [1 | | | | | | (c) | (i) | Indicate with an arrow labelled U (← U) on Figure 4a , the position of an unconformity formed less than 10 million years ago. [1] | | |-----|------|--|--| | | (ii) | With reference to Figures 4a and 4b describe three pieces of evidence which indicate that geological boundary R on Figure 4a represents a break in the geological record. [3] | | | | 1. | | | | | 2. | | | | | 3. | | | Figure 4c shows fossil M collected from the Quaternary deposit shown in Figure 4a. Figure 4c | (a) | Refer to Figure 4c. | | | |-----|---------------------|--|--| | | | | | | | to the original shell. You may wish to refer to the Mineral Data Sheet. | [3] | |-------|--|------------| | | | | | (ii) | Identify the group to which fossil M belongs. Give a reason for your choice. Fossil group Reason | [2] | | (iii) | Evaluate the use of fossil M in determining the environment of deposition of Quaternary deposit in which it is preserved. | the
[3] | | | | | **END OF PAPER** #### Acknowledgements Figure 1c wildabouttheworld.com Figure 2a tankongvtar.hu Figure 4a www.geologywales.co.uk Figure 4c svt premiere.s.free.Fr ### GCE AS/A level ### **GEOLOGY MINERAL DATA SHEET FOR USE WITH GL1** January 2014 | Name | Cleavage/Fracture | Hardness | Density
g cm ⁻³ | Streak | Lustre | Colour | Other diagnostic properties | |-----------------------------------|---------------------------------------|--------------------------|-------------------------------|-----------------------------|--------------------|--|---| | Quartz RF | *none/conchoidal | 7 | 2.65 | scratches streak plate | vitreous | colourless, milky but variable | hexagonal prisms terminated by pyramids | | Orthoclase
Feldspar RF | *2 good, 90 | 9* | 2.6 | scratches streak plate | vitreous | flesh, pink, white | *simple twin | | Plagioclase
Feldspar RF | *2 good, 90 | *6 | 2.7 | scratches streak plate | vitreous | creamy-white, grey, colourless | *repeated multiple twin | | Muscovite Mica RF | *1 perfect (basal) | *2.5 | 2.7-3.1 | white | pearly | colourless or pale yellow,
green or brown | *flaky | | Biotite Mica RF | *1 perfect (basal) | *2.5-3 | 2.7-3.1 | white | pearly | brown/black | *flaky | | Hornblende RF | *2 good, 60/120 | *5-6 | 3.0-3.5 | scratches streak plate | vitreous | black, dark green | prismatic crystals | | Augite | *2 good, 90 | *5-6 | 3.2-3.5 | scratches streak
plate | vitreous | greenish black | prismatic crystals | | Olivine | none/conchoidal | <i>2</i> -9 _* | 3.2-4.3 | scratches streak plate | vitreous | *olive green | | | Chiastolite/
Andalusite | poor 1/
uneven fracture | 7.5 | 3.1-3.3 | scratches streak
plate | vitreous | pearly grey/pink | needle crystals with square
x-sections, black centre | | Garnet | none | *6.5-7.5 | 3.5-4.3 | scratches streak plate | vitreous | red/brown | *12 sided crystals - each face rhomb shaped | | Chlorite | 1 good (basal) | *2 | 2.6-2.9 | white | pearly | green | fibrous/flaky as massive,
tabular crystals | | Calcite RF | *3 good, not at 90,
perfect rhombs | £* | 2.71 | white | vitreous | colourless, white, tints | *effervesces with
0.5M HCl, rhombic shape | | Fluorite | *4 good, parallel to octahedron | * | 3.0-3.2 | white | vitreous | colourless
purple/green/yellow | fluoresces in uv light,
cubic or octahedral crystals | | Halite | 3 good, 90 cubic | *2.5 | 2.2 | white | vitreous | colourless, white,
often stained | *salty taste, cubic crystals, often stained | | Gypsum | 1 good (basal) | *1.5-2 | 2.3 | white | silky, pearly | colourless, white,
often stained | fibrous or twinned crystals | | Barites | 2 good, 90 | *3-3.5 | *4.5 | white | vitreous, resinous | white, pink | bladed crystals | | Chalcopyrite | poor/conchoidal | 4 | 4.2 | *black | metallic | bronze yellow | *tarnished to peacock colours | | Pyrite | none/conchoidal | *6 | 5.0 | *greenish black | metallic | brass yellow | crystals often striated cubes | | Galena | *3 good, 90 cubic | *2.5 | *7.5 | *lead grey | metallic | lead grey | cubic crystals | | Haematite | poor/subconchoidal | *5.5-6.5 | 4.9-5.3 | *cherry red | metallic-dull | red/black skin/steel grey | kidney shaped masses,
fibrous | | * - Useful property for diagnosis | for diagnosis | RF - Col | mmon rock | Common rock-forming mineral | | | | * - Useful property for diagnosis This table should <u>not</u> be memorised. Marks in the outcomes of tests on minerals and, on some occasions, identification from test results.