Candidate	Centre	Candidate
Name	Number	Number
		2

GCE AS/A level

1213/01

GEOLOGY - GL3 GEOLOGY AND THE HUMAN ENVIRONMENT

A.M. THURSDAY, 19 May 2011 $1\frac{1}{4}$ hours

			Examiner only
Section A	1.	13	
Section A	2.	12	
	3.		
Section B	4.	25	
	5.		
Total		50	

ADDITIONAL MATERIALS

In addition to this examination paper, you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions from Section A and one from Section B.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Candidates are reminded that marking will take into account the use of examples and the quality of communication used in answers, especially in the structured essay.

SECTION A

Answer both questions 1 and 2 on the lines provided in the questions.

1. Figure 1a is a map showing the location of the San Onofre nuclear power plant, Southern California. Figure 1b shows a section of the Cristianitos Fault exposed in a sea cliff south east of the nuclear power plant.

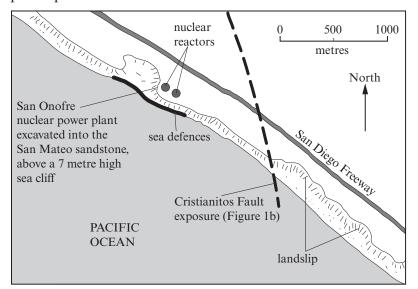
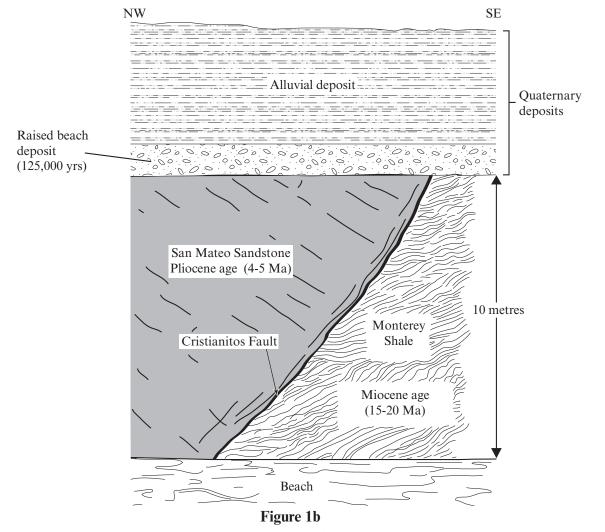



Figure 1a

	m
	0
3	ō
_	0
CI	_

(i)	State the shortest distance from the nuclear plant reactors to the Cristianitos Fault. [1]
(ii)	Explain why distance to the Cristianitos Fault was carefully considered when designing the nuclear plant. [1]
Refe	er to Figure 1b .
(i)	Previous movement on the Cristianitos Fault was dip-slip (vertical). Using the data, state the fault type represented by the Cristianitos Fault. Give the evidence for your answer. [3]
	Type of fault
	Evidence
(ii)	Suggest an age range (maximum and minimum age) for the last movement on the Cristianitos Fault. Describe the evidence used to obtain your answer. [3]
	Max age: After Minimum age: Before
	Evidence
the c	y faults that have moved in the last 35,000 years are considered to be <i>active</i> . From evidence, assess the likelihood that the San Onofre nuclear power plant might be in ger from movement on the Cristianitos Fault. [2]
	h reference to Figure 1a , and/or your knowledge, discuss what other geological

2. Figure 2 is a diagrammatic representation of a north-facing road cutting showing a range of instruments used to monitor the slope for potential failure and some methods used to improve slope stability.

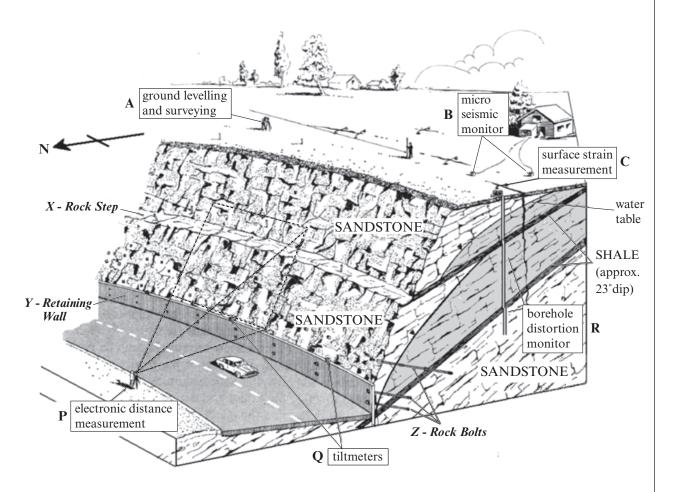


Figure 2

Source: Quarterly Journal of Engineering Geology and Hydrogeology; Franklin & Denton, Aug 1973, p260.

Refer to Figure 2.

(a)	Explain why the potential failure of the slope might be predicted from the geo factors identified in the road cutting.	logica [3]

1213

<i>(b)</i>	With	reference to the monitoring techniques in Figure 2, choose				
	(1)	one of the monitoring techniques labelled A, B or C,				
		and				
	(2)	one of the monitoring techniques labelled P, Q or R.				
		For each chosen technique, outline the method and suggest what changes might be observed that may help predict a sudden rock failure. [4]				
	(1)	Chosen technique (A, B or C)				
	(2)	Chosen technique (P, Q or R)				
(c)		ose one of the following methods used in Figure 2 to stabilise the road cutting and explain its suitability for this purpose: X - Rock Step				
		Y - Rock Step Y - Retaining Wall Z - Rock Bolts [2]				
	Chos	en technique (X, Y or Z)				
(d)		ain how changes in groundwater, during a period of prolonged rainfall, may reduce tability of the road cutting slope. [3]				

SECTION B

Answer **one** question from this section on the following pages.

The marks you will be awarded in your essay take into account:

evidence of geological knowledge and understanding;

the use of geological examples;

legibility, accuracy of spelling, punctuation and grammar;

the selection of an appropriate form and style of writing;

the organisation of material, and use of geological vocabulary.

EITHER,

- 3. (a) Describe the geological factors which control the pathways that landfill pollutants (leachate and gas) will take in the event of their leakage from a landfill site. [15]
 - (b) Explain the measures needed to change an abandoned sandstone quarry into a landfill site and to reduce the dangers from decomposing domestic waste. [10]

OR.

- **4.** (a) Describe
 - (i) two potential benefits,
 - (ii) two potential hazards,

of living in an active volcanic region dominated by frequent **basaltic** eruptions. [15]

(b) Using case studies, discuss the effectiveness of the measures used to minimise loss of life and damage to property in volcanically active areas. [10]

OR.

- **5.** (a) Describe how ground subsidence may be related to the extraction of
 - (i) rock and minerals,

(ii) water. [15]

(b) Explain how the extraction of rock, minerals and water may result in the pollution of surface water and groundwater. [10]

	ò
3	0
_	0
CI	_
_	0

	a
	ē
3	
_	
CI	-

((2)2.01)		