Candidate	Centre	Candidate		
Name	Number	Number		
		2		

GCE AS/A level

1211/01

GEOLOGY - GL1 FOUNDATION UNIT

A.M. THURSDAY, 19 May 2011 1 hour

		Examiner only
1.	17	
2.	15	
3.	15	
4.	13	
Total	60	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a copy of the Mineral Data Sheet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that marking will take into account the use of examples and the quality of communication used in your answers.

GL1 – FOUNDATION GEOLOGY

Answer all questions.

1. Figure 1 shows some of the plate tectonic features of northwest America.

Figure 1

Key:

- (a) (i) Indicate with an arrow in each of the blank boxes on **Figure 1** the relative direction of plate movement either side of the San Andreas Fault. [1]
 - (ii) **Figure 1** shows 3 types of plate boundary:

Convergent

Divergent

Conservative

Indicate which type of plate boundary is present at localities A, B and C by completing Table 1. [2]

Locality	Plate Boundary Convergent, Divergent, Conservative
A	•
В	•
С	•

Table 1

(i)	Explain why earthquakes occur along the San Andreas Fault.	[3]
(ii)	Describe how the depth of focus of earthquakes changes along t X to Y. Explain your answer.	the line from [3]
Desc	cription	
Expl	lanation	

211

(c)	(i) State beneath which locality A , B , C or D , magma of basaltic commost likely to originate. Locality		
	(ii)	Explain the origin of this basaltic magma. [2	
(d) 		cribe how the width of the Gulf of California is most likely to change over the nex nillion years. Give reasons for your answer. [3	
(e)		cribe how the size of the Juan de Fuca plate is most likely to change over the nex nillion years. Give a reason for your answer. [2	

Total 17 marks

2. Figure 2a shows the simplified features of a polished surface containing two rocks, rock E which is igneous, and rock F. A student has measured the maximum dimension of 100 crystals in rock E. The results have been recorded in Table 2.

Crystal size (x) (mm)	Frequency
$0 < x \leqslant 2$	0
$2 < x \leqslant 4$	9
$4 < x \leqslant 6$	69
$6 < x \le 8$	0
$8 < x \leqslant 10$	0
$10 < x \le 12$	3
$12 < x \le 14$	12
$14 < x \le 16$	7

Figure 2a

Table 2

(a) (i) Complete the histogram Figure 2b using the data in Table 2.

[2]

1211

Figure 2b

(ii) Draw in **Figure 2c**, making use of the scale, the texture of igneous rock **E**. [3]

Figure 2c

iii)	Explain the origin of the texture of igneous rock E.	[3]

(b) The student also measured and recorded the percentages of different minerals in rock E. These data are presented in the pie chart Figure 2d.

1211

(i)	State the name of mineral Q in Figure 2d . You may wish to make use of the Mineral Data Sheet . [1]
(ii)	Using your knowledge, name the mineral most likely to be represented by mineral R in Figure 2d . [1]
(iii)	With reference to Table 2 and Figure 2d , name igneous rock E . Give reasons for your answer. [3]
Nam	<i>te</i>
Reas	cons
rock	F in Figure 2a is a black, crystalline rock with a very different composition from E . Using your knowledge and the information in Figure 2a , suggest a possible on for the presence of rock F alongside rock E . [2]

Total 15 marks

[3]

3. Figures 3a and 3b are thin sections of two sandstones G and H.

Figure 3a Figure 3b

Describe the texture of sandstone G shown in Figure 3a.

(b)	Sandstone G is composed mostly of quartz. Assuming that both sandstones G and H originated from erosion of the same original rock, explain why quartz has survived to form sandstone G whereas feldspar has not. You may wish to refer to the Mineral Data Sheet .
(c)	Select from the list below the most appropriate name for sandstones G and H. [2] orthoquartzite breccia metaquartzite arkose
	Sandstone G Sandstone H

(a)

Figure 3c shows fragments of organisms typically found as fossils in sandstone G. Figure 3d is a sedimentary structure typically seen on the top surface of a bed in sandstone G.

Figure 3c Figure 3d

(a)	(1)	Name feature Z in Figure 3c.	[1]
	(ii)	Name the fossil group found in sandstone G , represented in Figure 3c .	[1]
	(iii)	Name the sedimentary structure shown in Figure 3d .	[1]
(e)		n reference to Figures 3a , 3c and 3d describe the most likely environm esition of sandstone G . Give reasons for your answers.	ent of [4]

Total 15 marks

(1211-01) **Turn over.**

4. Table 4 shows information about radioactive isotopes and their relationship to the number of half-lives elapsed.

Number of half-lives elapsed	% parent isotope	% daughter isotope
0	100	0
1	•	50
2	•	•

Table 4

(a)	State what is meant by a <i>half-life</i> .	[1]
(b)	Complete Table 4 to show the percentage of parent and daughter isotopes.	[2]
<i>(c)</i>	A rock contains a radioactive mineral with a percentage of parent isotopes of 6. Calculate the number of half-lives which have elapsed since the mineral formed. Syour working.	
	Number of half-lives	

(d) Figure 4 is a geological map with the geology in the northeast corner of the area not completed.

(i) State the type of igneous body (pluton, dyke, sill, lava flow) represented by igneous body **J** in **Figure 4**. Give reasons for your answer. [3]

Type of igneous body

Reasons	 	 	

(ii) With reference to Figure 4 state the most likely reason why the calculated radiometric age of igneous body J is younger at locality J_2 than at locality J_1 . [1]

(iii) Complete **Figure 4** by drawing the likely positions of igneous body **J** and

(iii) Complete **Figure 4** by drawing the likely positions of igneous body **J** and geological boundary **L** to show their relative ages within the blank area in the northeast corner. Give reasons for your answer. [4]

Reasons	

(1211-01) Total 13 marks

211

GEOLOGY

MINERAL DATA SHEET FOR USE WITH GL1 and GL2a May 2011

					•		
Name	Cleavage/Fracture	Hardness	Density g cm ⁻³	Streak	Lustre	Colour	Other diagnostic properties
Quartz RF	*none/conchoidal	L	2.65	scratches streak plate	vitreous	colourless, milky but variable	hexagonal prisms terminated by pyramids
Feldspar Orthoclase RF	*2 good, 90	9*	2.6	scratches streak plate	vitreous	flesh, pink, white	*simple twin
Feldspar Plagioclase RF	*2 good, 90	9*	2.7	scratches streak plate	vitreous	creamy-white, grey, colourless	*repeated multiple twin
Mica-muscovite RF	*1 perfect (basal)	*2.5	2.7-3.1	white	pearly	colourless or pale yellow, green or brown	*flaky
Mica-biotite RF	*1 perfect (basal)	*2.5-3	2.7-3.1	white	pearly	brown/black	*flaky
Hornblende RF	*2 good, 60/120	9-5*	3.0-3.5	scratches streak plate	vitreous	black, dark green	prismatic crystals
Augite RF	*2 good, 90	9-5*	3.2-3.5	scratches streak plate	vitreous	greenish black	prismatic crystals
Olivine RF	none/conchoidal	L-9*	3.2-4.3	scratches streak plate	vitreous	*olive green	
Chiastolite/ Andalusite	poor 1/ uneven fracture	7.5	3.1-3.3	scratches streak plate	vitreous	pearl grey/pink	needle crystals with square x-sections, black centre
Garnet	none	5.7-2.5*	3.5-4.3	scratches streak plate	vitreous	red/brown	*12 sided crystals - each face rhomb shaped
Chlorite	1 good (basal)	*2	2.6-2.9	white	pearly	green	fibrous/flaky as massive, tabular crystals
Calcite RF	*3 good, not at 90, perfect rhombs	*3	2.71	white	vitreous	colourless, white, tints	*effervesces with 0.5M HCl, rhombic shape
Fluorite	*4 good, parallel to octahedron	*4	3.0-3.2	white	vitreous	colourless purple/green/yellow	fluoresces in uv light, cubic or octahedral crystals
Halite	3 good, 90 cubic	*2.5	2.2	white	vitreous	colourless, white, often stained	*salty taste cubic crystals, often stained
Gypsum	1 good (basal)	*1.5-2	2.3	white	silky, pearly	colourless, white, often stained	fibrous, or twinned crystals
Barites	2 good, 90	*3-3.5	*4.5	white	vitreous, resinous	white, pink	bladed crystals
Chalcopyrite	poor/conchoidal	4	4.2	*black	metallic	bronze yellow	*tarnished to peacock colours
Pyrite	none/conchoidal	9*	5.0	*greenish black	metallic	brass yellow	crystals often striated cubes
Galena	*3 good, 90 cubic	*2.5	*7.5	*lead grey	metallic	lead grey	cubic crystals
Haematite	poor/subconchoidal	5.5-6.5	4.9-5.3	*cherry red	metallic-dull	red/black skin/steel grey	kidney shaped masses, fibrous

- Useful property for diagnosis

RF - Common rock-forming mineral

Marks in the examinations will be awarded for description of the outcomes of tests on minerals and, on some occasions, identification from test results. This table should <u>not</u> be memorised.