Candidate	Centre	Candidate	
Name	Number	Number	
		0	

GCE AS/A level

453/01

GEOLOGY - GL3 GEOLOGY AND THE HUMAN ENVIRONMENT

P.M. WEDNESDAY, 21 May 2008 $1\frac{1}{4}$ hours

For Examiner's Use only.

Section A	1	
	2	
Section B	3	
	4	
	5	
Total	50	

ADDITIONAL MATERIALS

In addition to this examination paper, you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions from Section A and one from Section B.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Candidates are reminded that marking will take into account the use of examples and the quality of communication used in answers, especially in the structured essay.

SECTION A

Answer both questions 1 and 2 on the lines provided in the question.

1. **Figure 1** shows the tectonic setting of the volcanic island of Krakatoa (Indonesia) that erupted violently in 1883, generating tsunamis causing more than 36,000 deaths. **Table 1** shows data on the tsunami generated at the climax of the eruption.

Source: http://www.drgeorgepc.com/Tsunami1883Krakatau.html

Figure 1

Coastal town	Distance from Krakatoa (km)	Tsunami arrival time after eruption climax (min)	Mean velocity of tsunami wave (km hr ⁻¹)	Max tsunami height (m)
Vlakke Hoek	96	40	144	15
Anjer	•	40	•	15
Telok Betong	80	60	80	22

Note: The height and velocity of a tsunami depends upon many factors including the shape of the shoreline and depth of the water across which it travels.

Table 1

(i)	Name the type of magma likely to account for the explosive eruption of Krakatoa in 1883.	
(ii)	Explain why magma of this type is typical of this region. [2	 2]
	height and velocity of a tsunami depend upon many factors including the shape of the line and depth of the water across which it travels.	 1e
(i)	Use Figure 1 to complete Table 1 by	
	 recording the distance from Krakatoa to Anjer, calculating the mean velocity of the tsunami crossing the Sunda Straits to Anje (in kilometres per hour). Show your working below. 	er 3]
(ii)	Describe and explain the difference in arrival times of tsunamis at Vlakke Hoek an Telok Betong following the eruption climax.	
 (iii)	Suggest two possible reasons why the maximum height of the tsunami at TeleBetong was higher than at the two other coastal towns.	
	ng your knowledge, explain the use of one method to reduce the risk from th ructive effects of tsunamis.	

2. Figure 2a shows the relationship between fresh and saline groundwater (saltwater) in a coastal aquifer.

The depth to the saline interface (the boundary between fresh and saline groundwater) (\mathbf{h}_2) is approximately 40 times the height of the water table (\mathbf{h}_1) above sea level. Thus $(\mathbf{h}_2 = 40 \times \mathbf{h}_1)$

Figure 2a

Refer	to Fig	ure 2a	
(a)	Give	a reason why saline groundwater is found below fresh water in coastal aquifers.	[1]
(b)	(i)	Explain why a cone of depression has developed in the water table around borehole.	the [2]
••••••	•••••		

(ii) Complete **Table 2** below by calculating the depth to the saline interface below the borehole (**h**₂) after pumping. You should make use of the formula in **Figure 2a**. [1]

	height of the water table above sea level (h ₁) at borehole site (m)	depth to saline interface (\mathbf{h}_2) $(\mathbf{h}_2 = 40 \times \mathbf{h}_1)$ (m)
before pumping	3	120
after pumping	1.5	•

Table 2

- (iii) Sketch on **Figure 2a**, the probable local change in the depth of the saline water interface (**h**₂) associated with this cone of depression. [2]
- (c) **Figure 2b** is a section through the Chalk (a form of limestone) aquifer, near Brighton.

abstraction of groundwater

Figure 2b

Refer to Figure 2b.

Figure 2b shows the pattern of groundwater abstraction from the aquifer.

(i)	State two properties of sedimentary rock that may allow groundwater to flow within the Chalk. [2]
	1
	2
(ii)	Explain how the overpumping of borehole A might result in problems with the water supply abstracted from the aquifer. [2]

(453-01)

(<i>d</i>)	Using your knowledge, explain how the stability of the ground around an abstratorehole can be affected by overuse of the aquifer.	action [2]

Total 12 marks

SECTION B

Answer **one** question from this section on the following pages.

You are advised to make use of examples where possible in your answer.

EITHER,

- **3.** (a) Describe how the mechanisms and triggers of mass movement (e.g. rock avalanches, landslides and debris flows) are linked to natural processes and rock properties. [15]
 - (b) Explain how slopes prone to mass movements might be stabilised. [10]

OR,

- **4.** (a) Describe the factors you would investigate to assess the suitability of a potential landfill site for the disposal of domestic waste. [15]
 - (b) Explain why former landfill sites may pose problems for future development of the area. [10]

OR,

- **5.** (a) Using one or more case studies, describe the effects of volcanic hazards that might result from **two** of the following:
 - (i) volcanic ash;
 - (ii) volcanic gases;
 - (iii) volcanic mudflows (lahars).

[15]

(b) Explain how the movement of underground magma may result in indicators that can be used in the prediction of volcanic eruptions. [10]

(453-01) **Turn over.**

Examiner only

