SPECIMEN MATERIAL

AS ENVIRONMENTAL SCIENCE PAPER 1

Mark scheme

Series

V 1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Examiners are required to assign each of the students' responses to the most appropriate level according to its overall quality, then allocate a single mark within the level. When deciding upon a mark in a level examiners should bear in mind the relative weightings of the assessment objectives (see page 28) and be careful not to over/under credit a particular skill. For example, in question 11.3 more weight should be given to AO1 than to AO2 and AO3. This will be exemplified and reinforced as part of examiner training.

Qu	Part	Marking guidance	Comments	Total marks	AO
01	1	A = photosynthesis B = sedimentation/fossilisation		2	AO2
01	2	4	Absorbed – Decay = Death and sinking	1	AO2
01	3	42.42 Accept 42.4	7000/(36 + 37 + 92) = 42.4 Or 7000/(90 + 35 + 40) = 42.4	1	AO2
01	4	5	(7 +90 + 55 + 65) - (92 + 120) = 5	1	AO2

Qu	Part	Marking guidance	Comments	Total marks	AO
02	1	Both answers correct for 1 mark X 100 $^{\circ}$ C; [A any value in range 85–120 $^{\circ}$ C] Y 500 $^{\circ}$ C; [A any value in range 150– 550 $^{\circ}$ C]	Students must recognise, from the table of data, which procedures are taking place and deduce appropriate temperatures.	1	AO2
02	2	Stage 1Calculation of mass values12.69 and 21.60Stage 2Percentage calculation58.75% ecf1 mark for a correct method of either stage2 marks for correct final answer with no working/correct working	Students must deduce which data relate to the wet soil sample, water loss or which value must be used for dry soil. Calculation summary: <u>Mass of water lost</u> x 100% Mass of wet soil Mass of water lost 31.02 - 18.33 = 12.69 Mass of wet soil 31.02 - 9.42 = 21.60 Percentage calculation $12.69 \times 100 = 58.75\%$ 21.60	2	AO2

02	3	Dry/in a desiccator (to prevent absorption of water)		1	AO2
02	4	53 hours	Constant mass reached and evident (not 52, as mass could still be declining further)	1	AO2

Qu	Part	Marking guidance	Comments	Total marks	AO
03	1	Any two from: illegal to kill illegal to injure illegal to collect illegal to sell illegal to disturb breeding/nesting designation of protected habitat 	g sites	2	AO1
03	2	 Any two from: role in nutrient recycling source of genes for crop breedir crop pollination role in biological control of pests 	-	2	AO1

03	3	One named conservation designation:	1	AO1
		eg Site of Special Scientific Interest/SSSI Local Nature Reserve/LNR National Nature Reserve/NNR Ramsar site Special Area of Conservation/SAC Special Protection Area/SPA Natura 2000 site Marine Nature Reserve/MNR Marine Conservation Zone/MCZ Marine Protected Area/MPA National Park Reject AONB/Green Belt/unqualified nature reserve/unqualified Country Park		

03 4	Decreased fragmentation/prevents islandisation links habitats	Students must show an understanding that the conservation role of	1	AO2
	 Any two from: increased access to resources on other areas prevention of separation of breeding populations reduced inbreeding risk of isolated populations larger gene pool of populations that can mix allows recolonisation after local extinction 	biological corridors is for the wildlife in the habitats they link, not in the corridor habitat itself.	2	

03	5	Any two from:	2	AO2
		 the tracking collar provides continual data record throughout the journey intermediate destinations can be identified periods of travel/rest can be identified feeding sites can be identified threats to survival can be identified in-journey habitats that need protecting can be identified Accept converse statements about leg rings 		

Qu	Part	Marking guidance	Comments	Total marks	AO
04	1	One mark for correct answer for each stage:	Calculation commentary	3	AO2
		First mark Total dry biomass above ground = 54000	(4320/100 x 50) x 25 = 54000t		
		Carbon in above ground biomass = 12700.8t	48% of this is above ground 54000/100 x 48 = 25920t		
			49% of this is C 25920/100 x 49 = 12700.8t		
		CO_2 released = 46569.6t			
		Accept 46566.67 – 46569.6			
		ecf	Mass of CO_2 from C combustion 12700.8/12 x 44 = 46569.6t		
		Three marks for correct final answer with no working/correct working	121 00.0/12 X ++ - +0000.01		

04	2	Any two from:	2	AO2
		 mangroves contain more stored carbon per unit area in living biomass mangroves contain more stored carbon per unit area in dead organic matter larger area cleared per year 		

04	3	 Any two named methodologies Random/systematic sample site location (representative) number of sample sites (representative) timing of samples related to weather/water flow replicates. 	Students must demonstrate that they know how to use a specific appropriate method that would produce accurate results, within a plan that would produce representative results.	5	AO1 = 3 AO2 = 2
		Three marks for any three details of one sampling method s : Method 1 • standardised collection of sample/			

 standardised water container/samples from same depth standardised light source in dark room/ no other light source standard distance between light source and water container calibrated light meter/turbidimeter measure transmission/scatter/reflection Reject penetration 		
 Secchi disc/turbidity tube/bottle measure depth when segments cross/ become indistinct subjectivity of judgement importance/difficulty of using with variable light levels 		
Method 3 standardised collection of sample/ standardised water container/samples from same depth		
 measure volume of water sample in measuring cylinder allow time for suspended solids to settle measure volume of settled particles (related to sample volume) 		

Qu	Part	Marking guidance	Comments	Total marks	AO
05	1	 CO₂ removed from the atmosphere named processes: photosynthesis by vegetation/tre dissolution in oceans 	understanding of natural processes to explain why	2	AO2
05	2	Initial change causes increased temperature Any one detail of positive feedback mechanism eg • melting land/sea ice reduces albedo/more sunlight absorbed • melting permafrost releases me • increased DOM decomposition releases CO ₂ • more forest/peat fires release C Further increase in temperature		1	AO1
05	3	One mark for named sensor platform type of sensor platform One mark for type of information co eg One named sensor platform or type sensor platform: Polar orbit/low altitude satellite Cryosat Landsat One type of information collected: Microwave emissions/Special S Microwave Imager/SSMI/Advan Microwave Scanning Radiometer/AMSR/Microwave scanner/radiometer IR/visible light/IR scanner/visible scanner Altitude/Radar altimeter OR	Ilectedspecific method that is actually used to measure ice area, not a method they plan.ofNo credit is given to vague methods, such as aerial/satellite surveys without reference to a specific technology.ensor cedThe information collected must be appropriate for the type of sensor platform given.	1 1	AO2
		One named sensor platform or type	of		

sensor platform: • Submarine • ROV • Autosub • Argo float		
 One type of information collected: Upward looking sonar/ULS detect movement of waves/static ice 		
Reject detail linked to inappropriate method		

05	4	Point in a changing climatic factor where natural processes perpetuate the change (so the original process is no longer required)	1	AO1	
		the change (so the original process is no longer required)			

05	5	Input data for a particular year	2	AO1	
		Compare the prediction for later years for which known data exist			

Qu	Part	Marking guidance	Total marks	AO	
06	1	CO_2 concentration in atmosphere re Less IR absorbed by CO_2 (greenho	2	AO2	
06	2	 Any two from: tree growth affected by other factors some years are hard to distinguish/low resolution few very old trees/incomplete data record trees not found in all locations 	Students should demonstrate an understanding that the accuracy of proxy data can be low and that there may be limitations on the dates and locations for which it exists.	2	AO2
06	3	data loggers named vehicle/carrier/location eg field stations/buoys/Argo balloons/aircraft remote sensing using ref	2	AO2	
06	4	For each feature: First mark: Identification of the secondary feature influenced by distance/mass Second mark: Use of data to illustrate difference in primary and secondary features. eg Mass First mark: Mass controls gravity which retains an atmosphere/maintains high atmospheric pressure/prevents water boiling Second mark Use of data Mass: Earth = 60×10^{23} kg, Mercury = 3.3×10^{23} kg Rel' Atm' Press': Earth = 1 Mercury= 1×10^{-14} .	Students should demonstrate an understanding that distance to the Sun and mass do not directly affect the ability of life to survive. Their importance is how they affect other factors. They should be able to apply their knowledge of Earth to the analysis of the data about other planets and make judgements on how the conditions would affect the survival of life.	4	AO3

Distance to the Sun First mark Distance to the Sun controls insolation which controls temperature	
Second mark Distance: Earth = 150×10^8 km, Mercury = 58×10^8 km.	
Mean temperature: Earth = 15 °C, Mercury = 260 °C.	
Accept prose descriptions of the differences in values where numbers are not given	

Qu	Part	Marking guidance	Comments	Total marks	AO
07	1	Process	Letter from Figure 8	2	AO1
		Ultraviolet light absorbed by a layer	ozone B		
		Infra red light absorbed by gr gases	eenhouse H		

07	2	Any one from:	1	AO1
		 satellites collect more data satellites collect data from all areas 		
		 satellites collect data more frequently 		
		satellites collect data from more predictable locations		
		Accept converse for helium balloons		

07 3	 Any two from: no significant difference if SD bars overlap indicates the distribution/spread/dispersal of results around each mean small standard deviation equals higher confidence in the mean 	2	AO3	
------	---	---	-----	--

07	4	24.44% / 24.4%	Calculation:	1	AO2
		Accept correct method of calculation using values from graph \pm 2 of correct values.	$\frac{\text{Difference in values}}{1980 \text{ value}} \times 100\%$ $\frac{225 - 170}{225} \times 100\% = 24.44\%$		

07	5	 Any four from: reduced/banned production/use (of CFCs/ODSs) named alternative material eg HCs/HFCs/HCFCs/alcohols named alternative process eg pump action/trigger pack named method of preventing release of waste CFCs eg recycle/drain CFCs from fridges/AC named waste disposal technique eg incineration 	Students do not need to describe the change in the trend but their answers should be related to changes in human activities that stabilise or reduce ozone depletion.	4	AO1 = 2 AO3 = 2
----	---	--	---	---	--------------------

Qu	Part	Marking guidance	Comments		Total marks	AO
08	1	Isoline should pass between points values span 250 Where the value is 250, the line sho pass through it		Students should draw an isoline which surrounds all areas with readings of 250 cpm and above. The exact position can be estimated but not identified, hence the range of acceptable estimates.	1	AO3

*	*	*	*	*	*	*	*	*
170	180	210	220	220	230	210	155	160
*	*	*	*	*	-	ж	*	*
175	190	230	250	280	250	210	175	180
						\mathbf{i}		
*	*	*	*	*	*		*	*
190	230	270	260	330	300	250	210	180
*	*	*	*	*	*	*	*	*
190	230	270	420	450	410	370	270	210
*	,	*	*	*	*	*	*	*
210	250	340	390	460	500	390	300	200
*	/ .	• *	ж	*	*	*	*	*
230	270	355	390	400	400	385	300	210
200	1	000	000	400	400	000		210
*	*	*	*	*	*	×		*
180	240	290	325	335	310	250	250	200
	*		4					
*	-	*	*	*		*	*	*
140	170	240	305	260	250	220	205	190
*	*	*	*	*	*	*	*	*
160	200	230	220	210	205	210	185	180

08	2	Area estimate = 32 km ²	1	AO3
		Accept values between 26 and 38		
		Accept correct estimate of incorrectly drawn line		
-				

08	3	More trial cores between cores values closest to 250	1	AO3	
----	---	--	---	-----	--

08	4	One mark for named process Two marks for details of process	1 2	AO1 = 2
		Egs: Hydrothermal deposition Any two from: • hot mineral solutions cool as they move (along fissures) • different minerals have different solubilities • separation by precipitation/deposition /fractional crystallisation Contact metasomatism Any two from: • movement due to concentration gradient/pressure • fluid diffusion/infiltration • mineral replacement/deposition		AO2 = 1

Level	Marks	Descriptor
		A comprehensive response to the question, with the focus sustained.
3		A conclusion is presented in a logical and coherent way, fully supported by relevant judgements.
	7 - 9	A wide range of knowledge and understanding of natural processes/systems is applied. The answer clearly identifies relationships between environmental issues.
		Relevant environmental terminology is used consistently and accurately throughout, with no more than minor omissions and errors.
2		A response to the question which is focussed in parts but lacking appropriate depth.
		A conclusion may be present, supported by some judgements, but it is likely not all will be relevant.
	4 - 6	A range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there may be a few inconsistencies, errors and/or omissions. The answer attempts to identify relationships between environmental issues, with some success.
		Environmental terminology is used, but not always consistently.
		A response to the question which is unbalanced and lacking focus. It is likely to consist of fragmented points that are unrelated.
		A conclusion may be stated, but it is not supported by any judgments and is likely to be irrelevant.
1	1-3	A limited range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there are fundamental errors and/or omissions. The answer may attempt to identify relationship between environmental issues, but is rarely successful.
		Limited environmental terminology is used, and a lack of understanding is evident.
	0	Nothing written worthy of credit.

Qu	Part	Marking guidanc	e	Con	nments	Total	AO
						marks	
	T						1
09	1	First mark:				3	AO1 = 2
		Named human health pro	olem				
	Second mark:						AO2 = 1
		Named medicine					
		Third mark:					
		Named wildlife taxon used	for researc	ch			
		Reject taxon, chemical/me other detail					
		Suitable examples					
		Human health problem	Named	medicine	Wildlife taxon		
		Pain/analgesia	Aspirin		Willow		
		Pain/analgesia	Opium/c	odeine	рорру		
		Breast cancer	Taxol		yew		
		Birth control pill/muscula	Diosgeni	in/cortisone	Mexican yam		
		injuries/ inflammation Brain cancer	Chloroto	vin	scorpion		
		Cancer	Melittin		Bee		
		Muscular dystrophy	Peptide	GsMtx-4	tarantula		
		Arthiritis	CVF		Cobra		
		Skin burns	Hipposu	doric acid	hippopotamus		
		HIV-AIDS	AZT		sponge		
		Herpes/melanoma/ Acyclovir sponge leukaemia					
		Credit other suitable examples.					
	1	1					
09	2	First mark:				3	AO1 = 2
		Why organism's adaptatic	ns are usef	ul for human ph	ysiology research		
		Second mark:					AO2 = 1
		Named taxon					
		Third mark:					
	Area of physiological research Reason why taxon is suitable for the study						
		Reject taxon, area of phys unlinked to other detail					
		60					
		eg L _ Hum	an health	Why the taxe	on is suitable for		
		layon	oblem	-	search		
		Marsupials Embr		Ease of gainir			
	l						

	development	from young marsupials outside the mother about embryo development
Sea urchin embryos	Teratogen testing	Ability of embryo cells to reform if no teratogen is present is used to predict the side effects of drugs on humans
Scorpion venom	Pancreatitis	Antarease (venom) induces pancreatitis in lab animals which increases information to aid human treatment
Sponges	Graft rejection	The study of sponges which do not reject grafts, helps prevent transplant rejection
Squid	Nerve function	Squid nerve cells are very wide and easy to study/ experiment on, which increases the understanding of human neurological disorders

Spec ref: All 3.3 Sample location - random sampling of vegetation in different areas - use of grid and coordinates, located using random numbers OR transport from area of higher light lovels to lover light lovels	AO2 = 3 AO3 = 2
 random sampling of vegetation in different areas use of grid and coordinates, located using random numbers OR 	AO3 = 2
- use of grid and coordinates, located using random numbers OR	AO3 = 2
OR	
- transect from area of higher light levels to lower light levels	
- continuous/interrupted transect	
- light readings in each vegetation sampling area	
Number of samples	
- reference to variability of readings/data	
- reference to data analysis/statistical significance	
Vegetation sampling	
- quadrat	
- appropriate size eg 0.5m/1m	
 justified choice of open frame/grid/point use of ID key 	
- justified choice of ecological feature(s) measured	
Species richness	
Species diversity	
Species frequency	
Species density	
Percentage cover	
Biodiversity eg Simpson's Index	
Light readings	
Standardised method	

 Calibrated light meter Height Orientation Same season/readings throughout year Same time of day Same weather conditions/cloud cover
Data analysis Data would be presented as a graph

Level	Marks	Descriptor			
3		A comprehensive response to the question, with the focus sustained.			
		A conclusion is presented in a logical and coherent way, fully supported by relevant judgements.			
	7 – 9	A wide range of knowledge and understanding of natural processes/systems is applied. The answer clearly identifies relationships between environmental issues.			
		Relevant environmental terminology is used consistently and accurately throughout, with no more than minor omissions and errors.			
		A response to the question which is focussed in parts but lacking appropriate depth.			
		A conclusion may be present, supported by some judgements, but it is likely not all will be relevant.			
2	4 – 6	A range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there may be a few inconsistencies, errors and/or omissions. The answer attempts to identify relationships between environmental issues, with some success.			
		Environmental terminology is used, but not always consistently.			
		A response to the question which is unbalanced and lacking focus. It is likely to consist of fragmented points that are unrelated.			
		A conclusion may be stated, but it is not supported by any judgments and is likely to be irrelevant.			
1	1-3	A limited range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there are fundamental errors and/or omissions. The answer may attempt to identify relationship between environmental issues, but is rarely successful.			
	0	Limited environmental terminology is used, and a lack of understanding is evident. Nothing written worthy of credit.			

Qu	Part	Marking guidance	Comments	Total marks	AO

10	1	One mark for correctly identifying the water source Sample A : river water (C)	Students should be able to analyse the table of data and select the information that allows the correct water sources to be identified and the other possibilities to be rejected.	1	AO3 = 1	
----	---	--	---	---	---------	--

Sample B: rainwater (D) the correct water sources to be identified and the other possibilities to be rejected.	10	identified and the other	1	AO3 = 1	
--	----	--------------------------	---	---------	--

10	 3 One mark for correctly identifying the water source Sample D: geothermal spring (A) 	Students should be able to analyse the table of data and select the information that allows the correct water sources to be identified and the other possibilities to be rejected.	1	AO3 = 1
----	--	---	---	---------

10	4	One mark for features that identify it and exclude others, for each source Sample A: high turbidity, high maximum coliform count, but low dissolved solid/calcium/sodium level. Sample B: highest dissolved oxygen saturation, lowest dissolved solid/chloride/calcium content.	Students should be able to analyse the table of data and select the information that allows the correct water sources to be identified and the other possibilities to be rejected.	3	AO3 = 3
		Sample D: highest temperature, no coliform bacteria, low turbidity.			

10	5	9 mark levels of response answer		AO1 = 4
		Source management to maintain/increase supplies:		AO2 = 3

reservoir construction for storage of surplus	
river regulation reservoirs	AO3 = 2
 aquifer recharge using surface surplus 	
 desalination of saline aquifers/seawater 	
afforestation to delay runoff	
maintenance of flood plains for storm water retention	
building rainwater catchments	
pollution control	
eg	
reduced use of nitrate fertilisers	
nitrate control zones	
river buffer strips	
pesticides	
industrial waste management to reduce emissions	
Control of leaks from water mains	
Water conservation methods:	
User management	
 Meters to reduce unnecessary use 	
 Banned activities eg sprinklers/hosepipes during droughts 	
Consumer choice	
showers/baths	
turning taps off	
watering cans rather than hosepipe/sprinklers	
Low water use equipment/management	
low water/timed/spray taps	
low-flush toilets	
 low water-use washing machines/dish washers 	
greywater use	
 xeriscaping of gardens/urban spaces 	

Level	Marks	Descriptor
		A comprehensive response to the question, with the focus sustained.
		A conclusion is presented in a logical and coherent way, fully supported by relevant judgements.
3	7 – 9	A wide range of knowledge and understanding of natural processes/systems is applied. The answer clearly identifies relationships between environmental issues.
		Relevant environmental terminology is used consistently and accurately throughout, with no more than minor omissions and errors.
2	4 – 6	A response to the question which is focussed in parts but lacking appropriate depth. A conclusion may be present, supported by some judgements, but it is likely not all will be relevant.

		A range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there may be a few inconsistencies, errors and/or omissions. The answer attempts to identify relationships between environmental issues, with some success. Environmental terminology is used, but not always consistently.
		A response to the question which is unbalanced and lacking focus. It is likely to consist of fragmented points that are unrelated. A conclusion may be stated, but it is not supported by any judgments and is likely to be irrelevant.
1	1-3	A limited range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there are fundamental errors and/or omissions. The answer may attempt to identify relationship between environmental issues, but is rarely successful.
		Limited environmental terminology is used, and a lack of understanding is evident.
	0	Nothing written worthy of credit.

Qu	Part	Marking guidance	Comments	Total marks	AO
11	1	No gaseous phosphorus compounds		1	AO1
		Very low solubility of phosphorus compounds		1	
		Accept converse statements for nitrogen			

11	2	Any two processes involving nitrates from: • eutrophication	2	AO2
		growth of algae		
		shading of macrophytesbreaking of foodchains		
		deoxygenation on decomposition		
		death of aerobic organisms		
		toxins released by blue-green algae/cyanobacteria		
		Any two problems caused by eutrophication from:	2	
		loss of fisheries	2	
		loss of wildlife habitat		
		increased treatment costs		
		navigation difficulties		

11	3	9 mark levels of response answer	9	AO1 = 4
		Ploughing/drainage – increased decomposition - CO ₂ emissions – global climate change		AO2 = 3
		Compaction by machinery/trampling – reduced infiltration – increased runoff – faster runoff – increased flow extremes – flooding – ecological		AO3 = 2

impacts eg flooding of sandbank/river bank nest sites
Reduced addition of organic matter – loss of organic matter – reduced water retention – increased irrigation requirements – over exploitation of water sources – loss of wetland habitats
Desertification – loss of farmland – land clearance elsewhere eg rainforest, grasslands
Desertification – reduced vegetation/transpiration – reduced rainfall downwind
Ploughing vulnerable soils/steep slopes/not contour ploughing, leading to soil erosion Soil erosion impacts: - sedimentation – reduced reservoir volume for water supply/HEP - river flooding - ecological impacts – reduced light for photosynthesis - sedimentation causes loss of fish breeding sites - damage to coral reefs/death of filter feeders - HEP turbine damage
Increased atmospheric particulates – settling on plants/urban areas, respiratory problems
Reduced land stability – landslides – impacts on urban areas/transport infrastructure
Reduced agricultural productivity – habitat destruction to create more farmland – increased intensification eg increased fertiliser inputs

Level	Marks	Descriptor
		A comprehensive response to the question, with the focus sustained.
		A conclusion is presented in a logical and coherent way, fully supported by relevant judgements.
3	7 - 9	A wide range of knowledge and understanding of natural processes/systems is applied. The answer clearly identifies relationships between environmental issues.
		Relevant environmental terminology is used consistently and accurately throughout, with no more than minor omissions and errors.
		A response to the question which is focussed in parts but lacking appropriate depth.
2	4 - 6	A conclusion may be present, supported by some judgements, but it is likely not all will be relevant.
		A range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there may be a few

		inconsistencies, errors and/or omissions. The answer attempts to identify relationships between environmental issues, with some success. Environmental terminology is used, but not always consistently.
1	1-3	A response to the question which is unbalanced and lacking focus. It is likely to consist of fragmented points that are unrelated.
		A conclusion may be stated, but it is not supported by any judgments and is likely to be irrelevant.
		A limited range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there are fundamental errors and/or omissions. The answer may attempt to identify relationship between environmental issues, but is rarely successful.
		Limited environmental terminology is used, and a lack of understanding is evident.
	0	Nothing written worthy of credit.

Assessment Objective Grid

	AO1	AO2	AO3	Total
01.1		2		2
01.2		1		1
01.3		1		1
01.4		1		1
02.1		1 (practical)		1
02.2		2 (practical/maths)		2
02.3		1 (practical)		1
02.4		1 (practical)		1
03.1	2 (knowledge)			2
03.2	2 (knowledge)			2
03.3	1 (knowledge)			1
03.4	. (ege)	3		3
03.5		2		2
00.0		3 (maths)		3
04.2		2		2
04.2	3 (practical)	2 (practical)		5
04.3		2 (practical)		2
05.1	3	<u> </u>		3
05.2	5	2		2
05.3	1 (knowladga)	2		1
05.4	1 (knowledge) 2			2
	Ζ			2
06.1		2		
06.2		2		2
06.3		2		2
06.4			4 (2 maths)	4
07.1	2			2
07.2	1			1
07.3			2 (maths)	2
07.4		1 (maths)		1
07.5	2		2	4
08.1			1	1
08.2			1	1
08.3			1	1
08.4	2	1		3
08.5	4	3	2	9
09.1	2	1		3 3
09.2		1		
09.3	4 (practical)	3 (practical)	2 (practical)	9
10.1			1 (maths)	1
10.2			1 (maths)	1
10.3			1 (maths)	1
10.4			3	3
10.5	4	3	2	9
11.1	2			2
11.2		4		4
11.3	4	3	2	9
	•	·		
Paper Total	43	52	25	120

aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved. AQA Education (AQA) is a registered charity (registered charity number 1073334) and a company limited by guarantee registered in England and Wales (company number 3644723). Registered address: AQA, Devas Street, Manchester M15 6EX