

General Certificate of Education

Environmental Science 5441

ESC1 Energy, Atmosphere and Hydrosphere

Mark Scheme

2008 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Environmental Science

June 2008 ESC1 Instructions: ; = 1 mark / = alternative response A = accept R = reject Question 1 1 D; K; F; J; G; K Total marks = 5

3

2	(a)	<u>Carbon dioxide</u> in atmosphere; respiration/combustion; (dead) organic matter; [R lithosphere]	3
2	(b)	Balanced processes/maintained concentration/inputs = outputs; photosynthesis – respiration/identified balancing processes;	2
2	(c)	Named <u>human</u> activity; process that changes carbon in dead organic matter;	
	eg	deforestation/harvesting increased litter/OM removal OR ploughing increased loss in decomposition OR use of organic manures increased DOM OR drainage increased aerobic decay 0 for activity with no explanation	2
2	(d)	1 for activity with wrong explanation Named effect (of CO ₂ release by human activities);; named change/process;;	
		description of change/process;;;	
		increased temperature	
		increased carbon dioxide/hydrogen carbonate in water increased carbonate sedimentation increased photosynthesis increased rate of decay/respiration increased rates of growth increased methane releases	
		change in carbon in named reservoir [R change in DOM]	
		ref to equilibrium ref to residence times	MAX 3
			Total marks = 10

3	(a)	Less energy to force air apart/push car through the air; friction;	
		reduced drag/air resistance/turbulence;	MAX 2
3	(b)	Any suitable example; detail;	
	eg	detail of engine design that increases <u>combustion efficiency</u> valve control temperature control choke control fuel injection ignition control	
		energy recovery hybrid fuels/energy recovery/recovered energy stored in batteries	
		more efficient fuel choice/energy density eg diesel instead of petrol	
		vehicle weight aluminium/thinner steel/fibre glass/better power to weight ratio	MAX 2
		[R answers related to car usage]	
3	(c)	Increased; accurate use of data to show fuel used per unit distance;	2
		eg 3320/6880 = 0.48 3970/10800 = 0.37 0.37 < 0.48	
3	(d)	Negative correlation;	1
3	(e)	Increasing thickness of insulation increases cost;	
		(increasing thickness) reduces heat loss/heating cost;	
		ref to (concept of) declining benefit of increasing thickness/ increasing payback time/	
		money better spent on other energy-saving procedures;	3
			Total marks = 10

4	(a)	Harnessing does no damage/no pollution; equipment extraction/manufacture/installation/habitat loss; named damaging process/material required:	
		aesthetics;	MAX 2
4	(b)	Carbon dioxide released on combustion; balanced by that absorbed during growth; agricultural methods may release greenhouse gases/named method; [A change of previous land use with impact on carbon dioxide]	MAX 2
4	(c)	Tidal power is intermittent; <u>flow/times</u> can be predicted/regular lunar <u>cycles</u> ; energy <u>only</u> harnessed when water flows; changing daily times; spring and neap tides/varying tidal range;	MAX 2
4	(d)	Low energy density/yield; too much land required/demand too great; competition with food crops; some vehicles can't use biofuels;	MAX 2
4	(e)	Supply reduced if use exceeds replacement; Maximum Sustainable Yield; overexploitation of wood/poor catchment management/geothermal power	; MAX 2
			Total marks = 10

5	(a)	Oxides of nitrogen/ozone/water (vapour); [A formulae]			
5	(b)	(i)	Named process/activity;; how activity increases atmospheric levels;		
		eg	landfill sites rice padi fields/waterlogged fields anaerobic respiration/anaerobic bacteria		
			livestock farming anaerobic bacteria		
			coal mine ventilation methane from coalification		
			use of (natural) gas leaks/releases from drilling/pipelines		
			melting ice (by human activity) methane release from permafrost	MAX 2	
5	(b)	(ii)	Named process/activity/use;;		
		eg	aerosol propellants solvents/de-greasing refrigerant expanded plastic		
			how it increases atmospheric levels /change of state/escape on waste disposal;		
5	(c)	Melt therr	ting <u>land</u> ice/ice cap <u>s</u> /named location of ice(on land); nal expansion;	MAX 2 2	
5	(d)	(i)	Not combustible; lacking technology to exploit / technology too expensive; can't be stored/unreliability (to match demand);	MAX 1	
5	(d)	(ii)	Named method;; detail; cables/power lines/grid		
			high voltage/ low current/ overhead/underground/ cooling/insulation		
			hydrogen production/electrolysis of water/conversion to chemical energy		
			storage method (eg pressurised/metal hydride)/ transport method (eg pipeline/cylinders/metal hydride)/		

named method of use at destination

MAX 2 Total marks = 10

6	(a)	Seav Grou	vater indwater	C D			
		upla	nd reservoir water	B		1 correct – 1 mark 2/3 correct – 2 marks 4 correct – 3 marks	3
6	(b)	(i)	Sterilisation/kill b	oacteria/kill path	ogens;		1
6	(b)	(ii)	Dental health;				1
6	(c)	Qua	lity of Written Com	munication is as	sessed in this a	nswer	
		Up t 1 eac 1 eac	o 4 named process ch for specific pur ch for details of pr	ses;;;; poses;;;; ocess;;;;			
		scree	ens remove large floa mesh/grill/filter	ting objects/pap	er/plastics		
		grit t	traps remove <u>road</u> grit/ slower flow	<u>stones</u>			
		prim	ary treatment remove/separate sedimentation/slo	organic solids/fa ow flow	eces		
		seco	ndary treatment removal of remai aeration tank/oxio secondary sedime action of aerobic	ning organic ma dation pond / tric entation bacteria	tter kling filter bed	I	
		tertia	ary treatment microscreens / collect bacteria / filtration /	phosphate rem precipitation iron sulphate	oval / chlori / kill pa / toxic	ination/UV athogens	
		sludį	ge treatment reduce volume/de anaerobic digestie	estroy odours/kil on/bacterial actio	l pathogens on/heat		
		sludį	ge disposal reduce quantity / incineration /	simple disposa landfill	l / beneficial u / agricultural	use/food production l fertiliser use	MAX 8
	[R	water	treatment processes	s: sand filter/floc	culation/coagu	lation/carbon filter/fluorida	tion]

Mark	Descriptor
2	All material is logically presented in clear, scientific English and continuous prose.
	Technical terminology has been used effectively and accurately throughout. At
	least half a page of material is presented.
1	Account is logical and generally presented in clear, scientific English. Technical
	terminology has been used effectively and is usually accurate.
	Some minor errors. At least half a page of material is presented.
0	The account is generally poorly constructed and often fails to use an appropriate
	scientific style to express ideas.

Quality of Written Communication

MAX 2

Total marks = 15