

ASSESSMENT and QUALIFICATIONS ALLIANCE

# Mark scheme June 2003

# GCE

# **Environmental Science**

Unit ESC1

Copyright  $^{\odot}$  2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: Director General

#### Instructions: ; = 1 mark / = alternative response A = accept R = reject

## Question 1

| (a) | (i)<br>(ii) | More Ultra Violet/wider wavelength range;<br>Shorter wavelength(s);                                                                                                                                                                                                                                                          | 1<br>1     |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (b) | Refle       | ectivity/proportion/amount of light reflected/reflection of light;                                                                                                                                                                                                                                                           | 1          |
| (c) | (i)<br>(ii) | Negative feedback/homeostasis/balance/equilibrium/self regulation;<br>Temperature regulation;<br>(temperature) reduced;<br>increased albedo/light reflection/reduced light reaching surface;<br><b>OR</b><br>reduced insolation (at surface);<br>reduced evaporation/transpiration;<br>reduced condensation/cloud formation; | 1<br>MAX 2 |
|     |             | T                                                                                                                                                                                                                                                                                                                            |            |

Total marks = 6

## Question 2

(a)

| (Wa  | ste)spent fuel rods/    | Vitrification/solid glass; |
|------|-------------------------|----------------------------|
|      | lear/uranium rods/      |                            |
| plut | onium;                  |                            |
| Use  | d fuel rod              |                            |
| clad | ding/filters from waste |                            |
| trea | tment;                  |                            |
|      |                         |                            |
| Clot | thing/general           |                            |
| cont | taminated               |                            |
| equi | ipment/fuel             |                            |
| mar  | ufacture;               |                            |
|      |                         | 4                          |

| (b) | (i)  | Nuclear power: relatively small/coal larger;                                                              | 1 |
|-----|------|-----------------------------------------------------------------------------------------------------------|---|
|     | (ii) | Nuclear problem for longer/justified reference to life span of waste;<br>must have comparative statements | 1 |

Total marks = 6

|     |       | High population/high level of industry/lower rainfall/lack of source with justification e.g. lack of reservoirs + topography/land use/ |     |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |       | lack of aquifers + geology/contamination;                                                                                              | 1   |
|     | (ii)  | Population decrease/reduced industry/change in type of industry;                                                                       | 1   |
|     | (iii) | Increase in population/per-capita consumption/tourism/industry/irrigation as climate changes;                                          | 1   |
| (b) | Sugge | stion of possible source:                                                                                                              |     |
|     |       | new aquifers/aquifer recharge/river abstraction/desalination/inter-basin transfer/transport/reservoirs/reuse/repair leaky pipes;       | 1   |
| (c) | (i)   | Reference to time period when availability is lower than demand/April to October demand is high, availability is low;                  | 1   |
|     | (ii)  | Storage during winter months/times of surplus water/low demand/high availability;                                                      |     |
|     |       | for later use;                                                                                                                         | 2   |
|     |       | Total marks                                                                                                                            | = 7 |

# Question 4

| (a) | Potential energy (of raised tide);<br>kinetic energy (of turbines)/mechanical energy;                                                                                                                                                              | 2      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| (b) | Any of the following:<br>Bay/estuary/high tidal range/low shipping use/low environmental impact/low<br>economic damage;<br>1 mark for description or justified example                                                                             |        |
|     | e.g.<br>Bay;<br>large volume of water/low construction cost/not too deep (for construction)/narrow<br>entrance to increase velocity;<br><b>OR</b>                                                                                                  |        |
|     | Large tidal range;<br>increased volume of water/increased potential energy/<br>greater water velocity; N                                                                                                                                           | IAX 2  |
| (c) | No energy conversion is 100% efficient/ref. to Laws of Thermodynamics/<br>water would stop moving if all energy harnessed/correct e.g. of "waste"<br>energy produced;<br>[A when too slow to harness KE/turn turbines]<br>[R ref to intermittency] | 1      |
|     | Total mar                                                                                                                                                                                                                                          | ks = 5 |

| (a) | X on 'Gases from industrial process' in heat exchanger;<br>Y on 'Fresh air' on pipe;                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| (b) | Heat transfer/conduction;<br>from (outgoing) wastes to (incoming) air (for use);<br>recycling/reuse of heat energy;<br>reduced demand for 'new' energy/fuel use;                                                                                                                                                                                                                                                                                                              | MAX 2  |
| (c) | Any method<br>e.g.<br>Increased length/long pipes;<br>increase surface area;<br><b>OR</b><br>Thinner pipes;<br>increased rate of conduction;<br><b>OR</b><br>Thermal insulation;<br>reduce heat losses (to surroundings);<br>[ <b>R</b> if around pipe]<br><b>OR</b><br>Pipes made of better thermal conductor/example;<br>more efficient/rapid heat transfer;<br><b>OR</b><br>Counter – current flow;<br>increased temperature gradient;<br>increased rate of heat transfer; | MAX 2  |

| (d) | Any suitable example:                                    |       |
|-----|----------------------------------------------------------|-------|
|     | 1 mark for method, 1 mark for expansion                  |       |
|     | e.g.                                                     |       |
|     | Aerodynamics;                                            |       |
|     | reduced friction/drag;                                   |       |
|     | OR                                                       |       |
|     | Better engine temperature control;                       |       |
|     | more efficient fuel combustion;                          |       |
|     | OR                                                       |       |
|     | Ignition control/electronic ignition/fuel injection;     |       |
|     | more efficient combustion;                               |       |
|     | OR                                                       |       |
|     | Optimum size of engine;                                  |       |
|     | [ <b>R</b> smaller]                                      |       |
|     | correct power : weight ratio/avoid unnecessary fuel use; |       |
|     | OR                                                       |       |
|     | No use of unnecessary energy-using equipment;            |       |
|     | Air conditioning/4WD/other suitable e.g.;                |       |
|     | OR                                                       |       |
|     | Lower weight/lighter construction materials;             |       |
|     | less fuel/energy required;                               | MAX 2 |
|     | [A "more efficient engine" for 1 mark only]              |       |
|     |                                                          |       |

Total marks = 8

## Question 6

| (a) | Higher pressure and temperature;<br>[only allow if explanation provided]<br>(pressure) forces out oil;<br>(temp) oil less viscous/flow more easily/comes our faster/more liquid; | 3               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (b) | Porous;<br>permeable;<br>impermeable/cap rock;<br>route from source rock;<br>[ <b>R</b> features of source rock]                                                                 | MAX 2           |
|     |                                                                                                                                                                                  | Total marks = 5 |

| (a)  | UV absorbed;<br>energy converted to chemical energy;<br>breaks up/splitting of diatomic oxygen;<br>splitting/destruction of ozone;<br>reversible reaction/dynamic equilibrium/cycle repeated;                                                                                                                                                                                                | MAX 3      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (b)  | Less/no UV reaches Earth's surface/absorbs UV/barrier to UV/UV filtered out;<br>prevents all/tissue damage/example of effect;<br>DNA damage/(skin) cancer/eye problems;                                                                                                                                                                                                                      | 2          |
| (c ) | CFCs absorb UV/short W/L radiation;<br>chlorine released;<br>chlorine reacts with monatomic oxygen;<br>chlorine released again;<br>reduced levels of O/increased levels of O <sub>2</sub> ;<br>ozone level reduced/less ozone formed/ozone hole/thinner ozone layer;<br>[ <b>R</b> radiation on own]<br>[ <b>R</b> CFCs break down ozone]<br>[ <b>R</b> properties of CFCs e.g. persistence] | MAX 3      |
|      | Total                                                                                                                                                                                                                                                                                                                                                                                        | maulta — 9 |

Total marks = 8

(a)

| (i) Gas;            | (ii) Activity;;                                                                                                                                                                                                                                                                                              | (iii) Emission reduction;;;                                                                                                                                                                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carbon dioxide;     | Combustion of fossil fuels/first<br>example;<br>second example of fossil fuel use;<br>(only one example from each of<br>industrial or domestic or transport<br>use of fossil fuels)<br>combustion of wood/biomass;<br>increased decomposition;<br>(reduced photosynthesis with<br>cause) e.g. deforestation; | Appropriate processes and<br>descriptions;<br>non FF use/use of renewables;<br>increased efficiency of use/better<br>combustion efficiency/energy<br>conversion efficiency;<br>reduced unnecessary use; |
| Ozone;              | Use of ozone in water treatment;<br>NO <sub>x</sub> breakdown;                                                                                                                                                                                                                                               | Use of Cl <sub>2</sub> ;<br>control of hydrocarbons;<br>control of NO <sub>x</sub> ;<br>catalytic converters;<br>e.g. of reaction in catalytic<br>converter;                                            |
| Oxides of nitrogen; | Combustion of fuel/in vehicle<br>engines;<br>use of nitrate fertilisers;<br>deforestation by burning/stubble<br>burning;                                                                                                                                                                                     | Organic fertilizers;<br>slow release inorganic fertilizer;<br>catalytic converters;<br>e.g. of reaction in catalytic<br>converter;<br>low temperature combustion;                                       |
| Methane;            | Landfill sites;<br>paddy fields<br>fossil fuel extraction;<br>herbivores/ruminants/<br>livestock;                                                                                                                                                                                                            | Name of alternative disposal<br>technique;<br>description of process;<br>ref to organic matter;<br>alternative crops;<br>collection of methane;<br>reduced livestock rearing;                           |
| CFCs;               | Aerosol cans;<br>expanded plastics;<br>solvents;<br>refrigerants/air conditioning;                                                                                                                                                                                                                           | Alternative propellants;<br>alternative gases for expanded<br>plastics;<br>alternative solvents;<br>alternative regfrigerants;                                                                          |
| Water vapour;       | Named process increasing<br>evaporation;<br>named process increasing<br>transpiration;                                                                                                                                                                                                                       | Process/activity to control<br>temperature;<br>details of mechanism;<br>control of vegetation;                                                                                                          |
| 1                   | MAX 2                                                                                                                                                                                                                                                                                                        | MAX 3                                                                                                                                                                                                   |

(b) Changes in:

temperature; humidity; wind direction; wind strength; ocean currents; temperature extremes; vegetation distribution; rainfall patterns; cloud cover; insolation/albedo/scattering; species distribution/dominance; C3 & C4 plant dominance; growth rates; sea-level rise; flooding of low-lying land; more evaporation; increased rainfall; increased erosion; changed distribution of agriculture; extinctions/reduced biodiversity; soil composition/processes; vegetation fire frequency; change to biogeochemical cycles; CO<sub>2</sub> dissolved in oceans e.g. decomposition releasing CO<sub>2</sub> ice melting MAX 9 [A corresponding opposite statements – global warming/cooling] Up to 5 points with up to 1 for expansion of each

Total marks = 15