Surname				Othe	r Names				
Centre Nun	nber	ber Candidate Number							
Candidate Signature		ure							

General Certificate of Education June 2006 Advanced Level Examination

ELECTRONICS Unit 5 Communications Systems

ELE5

Tuesday 13 June 2006 1.30 pm to 3.00 pm

For this paper you must have:

- a calculator
- a pencil and ruler

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want marked.
- A *Data Sheet* is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 72.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Any correct electronics solution will gain credit.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use							
Number Mark Number Mark							
1	1 5						
2		6					
3 7							
4							
Total (Co	Total (Column 1)						
Total (Co	Total (Column 2)						
TOTAL							
Examiner	's Initials						

Data Sheet

- A perforated *Data Sheet* is provided on pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- Detach this perforated sheet at the start of the examination.

Resistors Preferred values for resistors (E24) series:

1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 ohms and multiples that are ten times greater.

Resistor Printed Code

This code consists of letters and numbers:

(BS 1852)

R means $\times 1$ K means \times 1000 (i.e. 10³)

M means $\times 1\ 000\ 000$ (i.e. 10^6)

Position of the letter gives the decimal point

Tolerances are given by the letter at the end of the code, $F = \pm 1\%$,

 $G = \pm 2\%$, $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$.

Resistor Colour Code

Number 0	Colour Black	Tolerance
$\frac{1}{2}$	Brown	Value ↓
3	Red	variae
4	Orange Yellow	
5	Green	
6	Blue	<u> </u>
7	Violet	Ť
8	Grey	Multiplier
9	White	1

Tolerance, gold = $\pm 5\%$, silver = $\pm 10\%$, no band $\pm 20\%$.

Silicon diode $V_{\rm F} = 0.7 \, {\rm V}$

$$V_{\rm F} = 0.7 \, {
m V}$$

Silicon transistor

 $V_{\rm be} \approx 0.7 \, \rm V$ in the on state $V_{\rm ce} \approx 0.2 \, \rm V$ when saturated

Resistance
$$R_T = R_1 + R_2 + R_3$$

series

$$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

parallel

Capacitance
$$\frac{1}{C_{\rm T}} = \frac{1}{C_{\rm 1}} + \frac{1}{C_{\rm 2}} + \frac{1}{C_{\rm 3}}$$

series

$$C_{\rm T} = C_1 + C_2 + C_3$$

parallel

Time constant T = CR

$$T = CR$$

A.C. theory
$$I_{\rm rms} = \frac{I_{\rm o}}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_{\rm o}}{\sqrt{2}}$$

$$X_{\rm C} = \frac{1}{2\pi f C}$$

reactance

$$X_{\rm L} = 2\pi f L$$

reactance

$$f = \frac{1}{T}$$

frequency, period

$$f_{\rm o} = \frac{1}{2\pi\sqrt{LC}}$$

resonant frequency

Turn over

Operational amplifier
$$G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$$

voltage gain

$$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm 1}}$$

inverting

$$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$$

non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$

summing

Astable and Monostable using NAND Gates $f \approx \frac{1}{2RC}$

$$f \approx \frac{1}{2RC}$$

astable

$$T \approx RC$$

monostable

555 Astable and Monostable

$$T = 1.1RC$$

monostable

$$t_{\rm H} = 0.7(R_{\rm A} + R_{\rm B})C \\ t_{\rm L} = 0.7R_{\rm B}C$$

astable

$$f = \frac{1.44}{(R_A + 2R_B)C}$$

two resistor circuit

Electromagnetic Waves $c = 3 \times 10^8 \text{ m s}^{-1}$

$$c = 3 \times 10^8 \,\mathrm{m\,s^{-1}}$$

speed in vacuo

List of BASIC Commands DIM variable [(subscripts)]

DO [{WHILE | UNTIL} condition]

[statement block]

DO

[statement block]

LOOP [{WHILE | UNTIL} condition]

FOR counter = start TO end [STEP increment]

[statement block]

NEXT counter

GOSUB [label | line number]

[statement block]

RETURN

IF condition THEN

[statement block 1]

ELSE

[statement block 2]

INKEY\$

INP (port %)

INPUT [;] ["prompt" {;1, }] variable list (comma separated)

LPRINT [expression list] [{ ;1, }]

OUT port%, data%

PRINT [expression list] [{;1,}]

REM remark

Answer all questions in the spaces provided.

1	(a)	A radio transmitter uses the	following sub-systems:
---	-----	------------------------------	------------------------

carrier generator input transducer modulator transmitter

Draw a labelled block diagram to show how these sub-systems are connected.

(4 marks)

(b) Electromagnetic signals can be transmitted using a variety of media.

State, with a reason in each case, which medium is best

- 1	î	1 1 1 0	large	hone	TT71 /14	h 10	raa	111200

medium

reason

(ii) if one end of the communications link is mobile,

medium

reason

(iii) if a high level of security is required.

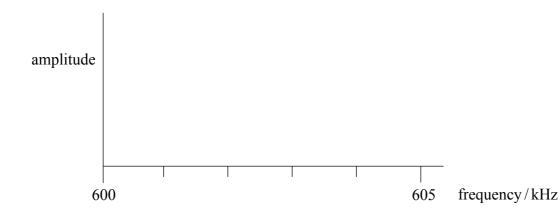
medium

reason

(6 marks)

2 (a) Describe how the information signal amplitude and frequency are encoded on to a carrier using amplitude modulation (AM).

frequency


(2 marks)

(b) Describe how the information signal amplitude and frequency are encoded on to a carrier using frequency modulation (FM).

frequency

(2 marks)

(c) An AM transmitter uses a carrier frequency of 603 kHz which is modulated with an information signal of a single frequency of 440 Hz.
 Draw a complete frequency spectrum diagram of the modulated carrier.
 Label all the features of your diagram and state the frequencies of all the components of the modulated signal.

(6 marks)

(a)	Wha	t type of op-amp circuit could best be used for the af amplifier?	
			(1 mark
(b)	R ₁ ha	w this type of circuit in the space below. as a value of $15\mathrm{k}\Omega$, and R_f has a value of $300\mathrm{k}\Omega$. It these components with their correct values on your diagram and output connections to the circuit.	d label the input
			(4 marks
(c)	Calc	ulate, using data given earlier in this question:	(4 marks
(c)	Calc (i)	ulate, using data given earlier in this question: the voltage gain of this amplifier circuit,	(4 marks
(c)			(4 marks
(c)	(i)	the voltage gain of this amplifier circuit,	(4 marks)

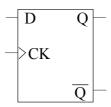
	(i)	Suggest a use for this circuit in the receiver.	
	(ii)	This circuit has a high quality factor. Explain the effect this will have performance of the receiver.	e on the
	(iii)	Calculate the resonant frequency of this circuit.	
	(iv)	Draw a resonance curve for this circuit. Label your axes.	
			(6 marks)
(b)	The i	radio receiver is unable to receive weak signals. What aspect of the receiver's performance requires improvement?	

(a)	(i)	State and describe three differences between analogue and digital communication.
		1
		2
		3
		(3 marks
	(ii)	Explain briefly how these differences might affect the choice of one method over the other.
		(3 marks
b) 1	Nam	e two different techniques for transmitting many signals on one carrier.
1	1	
2	2	
		(2 marks

8

(a)	(i)	State a secure medium through which optical signals can travel.
	(ii)	State how optical signals can travel along paths that are not straight.
1	(iii)	State two factors that limit the range of optical signals.
		1
		2
	(iv)	An LED is used as a light source in an optical communications system. The LED has a forward voltage drop of 2 V and operates from a power supply of 12 V. Calculate the value of the series resistor necessary to limit the LED forward current to 10 mA.
		(6 marks)

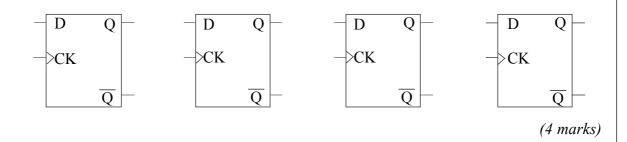
- (b) In a mobile phone circuit, audio frequencies above 4 kHz must be removed before sampling takes place.
 - (i) Draw the circuit diagram of an active treble cut filter.


6

(ii)	In the active filter circuit, the input resistor is $10\mathrm{k}\Omega$, the feedback resistor is $39\mathrm{k}\Omega$ and the capacitor is 1 nF. Show that the break point frequency is approximately $4\mathrm{kHz}$.
(:::)	
(iii)	Calculate the voltage gain of this circuit at a frequency well below the break point frequency.
(iv)	What sampling rate must be used for the mobile phone system where frequencies up to 4 kHz are transmitted? Explain why this is.
	Sampling rate
	Explanation
	(12 marks)

Turn over for the next question

18


7 The symbol for a D-type flip-flop is shown below.

(a) Describe the function of the D-type flip-flop.

	(2 marks)

(b) Complete the diagram below to show how a shift register is constructed from D-type flip-flops. Label the data and clock inputs, and the data output for the complete system.

(c) Data can be communicated in serial or parallel form.

Explain which form is better for long distance communication.	

(2 marks)