Surname				Other	Names			
Centre Nur	mber				Candid	ate Number		
Candidate	Signa	ture						

Leave blank

General Certificate of Education June 2002 Advanced Level Examination

ELE5

ELECTRONICS Unit 5 Communications Systems

Friday 28 June 2002 Afternoon Session

In addition to this paper you will require:

- · a calculator;
- a pencil and a ruler.

Time allowed: 1 hour 30 minutes

Instructions

- Use a blue or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- A *Data Sheet* is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 72.
- Mark allocations are shown in brackets.
- Any correct electronics solution will gain credit.
- The paper carries 20% of the total marks for Electronics Advanced award.
- You are reminded of the need for good English and clear presentation in your answers.

	For Examiner's Use				
Number	Mark	Number	Mark		
1					
2					
3					
4					
5					
6					
7					
Total (Column	1)	\longrightarrow			
Total (Column	2)	\longrightarrow			
TOTAL					
Examine	er's Initials				

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- Detach this sheet before you begin work.

Data Sheet

Resistors Preferred values for resistors (E24) series:

1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 ohms and multiples that are ten

times greater.

Resistor Printed Code This code consists of letters and numbers:

> R means $\times 1$ (BS 1852)

K means \times 1000 (i.e. 10³)

M means $\times 1~000~000$ (i.e. 10^6)

Position of the letter gives the decimal point

Tolerances are given by the letter at the end of the code, $F = \pm 1\%$,

 $G = \pm 2\%$, $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$.

Resistor Colour Code Number Colour

Tolerance, gold = \pm 5%, silver = \pm 10%, no band \pm 20%.

Silicon diode $V_{\rm F} = 0.7 \, {\rm V}$

 $V_{\rm be} \approx 0.7 \, \rm V$ in the on state $V_{\rm ce} \approx 0.2 \, \rm V$ when saturated Silicon transistor

Resistance $R_T = R_1 + R_2 + R_3$ series

$$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
 parallel

Capacitance $\frac{1}{C_1} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ series

$$C_{\rm T} = C_1 + C_2 + C_3$$
 parallel

Time constant T = CR

ac theory
$$I_{\rm rms} = \frac{I_{\rm o}}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_{\rm o}}{\sqrt{2}}$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$
 reactance

$$X_{\rm L} = 2\pi f L$$
 reactance

$$f = \frac{1}{T}$$
 frequency, period

$$f_{\rm o} = \frac{1}{2\pi\sqrt{LC}}$$
 resonant frequency

Turn over

SA2504/0202/ELE5

Operational amplifier $G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$

$$G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$$

voltage gain

$$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm 1}}$$

inverting

$$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_1}$$

non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$
 s

summing

Astable and Monostable using NAND Gates $f \approx \frac{1}{2RC}$

$$f \approx \frac{1}{2RC}$$

astable

$$T \approx RC$$

monostable

555 Astable and Monostable

$$T = 1.1RC$$

monostable

$$t_{\rm H} = 0.7(R_{\rm A} + R_{\rm B})C$$

 $t_{\rm L} = 0.7R_{\rm B}C$

astable

$$f = \frac{1.44}{(R_{\rm A} + 2R_{\rm B})C}$$

two resistor circuit

Electromagnetic Waves $c = 3 \times 10^8 \text{ m s}^{-1}$

$$c = 3 \times 10^8 \,\mathrm{m\,s^{-1}}$$

speed in vacuo

List of BASIC Commands DIM variable [(subscripts)]

DO [{WHILE | UNTIL} condition]

[statement block]

LOOP

DO

[statement block]

LOOP [{WHILE | UNTIL} condition]

FOR counter = start **TO** end [**STEP** increment]

[statement block]

NEXT counter

GOSUB [label | line number]

[statement block]

IF condition THEN

[statement block 1]

ELSE

[statement block 2]

INKEY\$

INP (port %)

INPUT [;] ["prompt" {;1,}] variable list (comma separated)

LPRINT [expression list] [{ ;1, }]

OUT port%, data%

PRINT [expression list] [{;1,}]

REM remark

Answer all questions in the spaces provided.

	10110	wing su	o-systems.									
	ante	nna,	audio amplif	ier,	detector/	demodula	tor,	loudspe	eaker,	tuned	circu	uit.
												I-~)
										(5	mark	(S)
(b)	The	receiver	in part (a) is	s tuned	to a car	rier frequ	ency of	f 1.5 MI	Hz.	(5	mark	(S)
(b)		receiver ulate	in part (a) is	s tuned	to a car	rier frequ	ency of	f 1.5 MI	Hz.	(5	mark	cs)
(b)		ulate the wa	in part (a) is avelength of $= 3 \times 10^8 \text{ m}$	the c			-					
(b)	Calc	ulate the wa	avelength of	the c			-					
(b)	Calc	the wavacuo	avelength of	the cs ⁻¹)	carrier wa	aves, (c,	speed					
(b)	Calc	the wavacuothe len	avelength of $= 3 \times 10^8 \text{ m}$	the cs ⁻¹)	earrier wa	aves, (c,	speed	of elec	etromaş	gnetic w	aves	in
(b)	Calc	the wavacuo the len	avelength of $= 3 \times 10^8 \text{ m}$	the cs ⁻¹)	arrier wa	this freq	speed	of elec	tromaş	gnetic w	aves	in
	Calc (i)	the wavacuo the len	avelength of $= 3 \times 10^8 \text{ m}$	the cs ⁻¹)	arrier wa	this freq	speed	of elec	etromaş	gnetic w	aves	in
(b)	Calc (i) (ii)	the wavacuo the len	avelength of $= 3 \times 10^8 \text{ m}$ agth of a half	the cos ⁻¹)	earrier was	this freq	speeduency.	of elec	etromaş	gnetic w	aves	in
	Calc (i) (ii)	the wavacuo the len	avelength of $= 3 \times 10^8 \text{ m}$	the cos ⁻¹)	earrier was	this freq	speeduency.	of elec	etromaş	gnetic w	aves	in

	Draw a labelled sub-systems:	block diagram of a radio	transmitter which consists	s of the followin
	antenna,	carrier generator,	input transducer,	modulato
				(4 mark
(b)	The carrier gene	erator contains a tuned circu	uit.	
		curves on the axes below uality factor tuned circuits.	to show the response of h	igh quality fact
	Label the	high Q curve "H" and the	low Q curve "L".	
		!		
		; ;		
	amplitude	 		
	ampirtude	; ;		
		resonant free	juency freque	_
		resonant freq	quency freque	ency
	(ii) A tuned c	ircuit contains a 5 μH coil a	and a 20 pF capacitor.	

(5 marks)

3 A frequency spectrum diagram for an amplitude modulated carrier wave is shown below.

(a)	Label the carrie	r, the lower	sideband and	the upper	sideband.	(3	mark	S
-----	------------------	--------------	--------------	-----------	-----------	----	------	---

(b)	Calculate the	value	of the	highest	audio	frequency	that i	s modulated	on t	o the	carrier
	wave.										

(2	marks)

(-)	XX 71. : -1.	1	1		41. : -	_: 10
(c)	wnich	broadcasting	bana	contains	tnis	signai

(1)	mark)

(d) Name **one** broadcasting band other than the band you have named in part (c) that would contain

/*\	43.5	
(i)	AM	signals
(1)	7 FIAT	orginals.

/ • • \	T 3 4	
(ii)	H 1\/I	cianale

/ \		
(a)		e a type of op-amp circuit with a high input resistance which could be used to ase the amplitude of the signal.
	•••••	(1 mark)
(b)	Draw	v the op-amp circuit described in (a) in the space below.
	Labe	I the input and output connections of the circuit.
		(4 marks)
(c)		$(4\ marks)$ ose and calculate suitable values for the components in your circuit so that the ut voltage will be 800 mV.
(c)		ose and calculate suitable values for the components in your circuit so that the
(c)		ose and calculate suitable values for the components in your circuit so that the
(c) (d)	outp	ose and calculate suitable values for the components in your circuit so that the ut voltage will be 800 mV.
	outp	ose and calculate suitable values for the components in your circuit so that the ut voltage will be 800 mV. (3 marks) circuit is then examined for its suitability as a rf amplifier. What property of the op-amp is relevant in the design of a rf amplifier?
	outpo	ose and calculate suitable values for the components in your circuit so that the ut voltage will be 800 mV. (3 marks) circuit is then examined for its suitability as a rf amplifier.

4

5	(a)	Draw a diagram of a cross-section of an optical fibre. Label on your diagram of low and high refractive index.	n regions
		(2 marks)
	(b)	An optical fibre laid on a curve will still allow transmission of an optical signal.	
		what property of the system allows this and how the light travels along a curv	
		(,	3 marks)
	(c)	State what solid state devices are used for	
		(i) the generation of an optical signal,	
		(ii) the reception of an optical signal.	
	(1)		2 marks)
	(d)	State two advantages of the use of optical fibres in a telephone system. 1	
		1	
		2	

 $\left(\begin{array}{c} \\ \hline g \end{array}\right)$

Ea	ach	obile telephone system has a total bandwidth available of 16 MHz at the base station. In mobile telephone requires an operating bandwidth of 8 kHz for reception and a further liz for transmission during a call.				
(:	a)	Wha	t type of signal links the handset to the base station?			
(1	b)		ulate the maximum number of telephone calls that can be supported by the base on at one time.			
			(2 marks)			
(c)		ulate the highest modulating frequency that can be encoded using the information above.			
			(2 marks)			
(0	d)	Mod	ern mobile telephones use digital communications systems.			
		(i)	How are digital signals communicated?			
		(ii)	Name three techniques that can be used to modulate a carrier with a digital signal.			
			1			
			2			
			3			

TURN OVER FOR THE NEXT QUESTION

7 (a) Complete the block diagram of a superheterodyne radio receiver.

(5 marks)

(b)	The	output circuit of the af amplifier in part (a) above is a push-pull circuit.				
	(i)	Explain what a push-pull circuit is.				
	(ii)	The push-pull circuit can create a form of distortion which is more obvious at a low volume level. State what type of distortion this is and explain how it can be				

1	reduced.						
	•••••	•••••	•••••	 •••••	•••••	•••••	
•				 			•••••

		• • • • • • • • • • • • • • • • • • • •
(iii)	The push-pull amplifier has a \pm 12 V supply and is connected to a 4 Ω lo Estimate, by calculation, the maximum output power of the amplifier.	
		(5 marks)

SA2504/0202/ELE5

(c) Part of a logic system for a data multiplexer system is shown below.

(i) Complete the truth table for this logic system.

A	В	S	Q
0	0	0	
1	0	0	
0	1	0	
1	1	0	
0	0	1	
1	0	1	
0	1	1	
1	1	1	

(4 marks)

(ii) Convert this logic system into one using **four** NAND gates only. Draw the converted system below.

(4 marks)

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE