
General Certificate of Education Advanced Level

Confidential

Mark Scheme

Important Notice

Mark schemes have been issued on the basis of **one** copy per Assistant Examiner and **two** copies per Team Leader.

(i) - OS controls the hardware in such a way that - the individual does not know that they are using a network - OS hides the communication necessary. (ii) - Storage space partitioned into many logical areas - Storage is allocated to users of the network by system manager - OS allows normal file manipulation of a stand alone - Some file areas may be shared (iii) - Different user types given different rights - R/O, other protections on files/data - Passwords and ID to establish identity (1 per -, max 2 per dotty, max 6) [6] b - HCI - Type/to allow communication - Utility programs - Routines that the OS makes available to the user/example - Hardware control/Input and Output - Software routines to control the hardware/device drivers Multi tasking capability - allows different Windows/user can carry on more than one task at a time - Spooling - to queue jobs for input/printing/.. - Security - to ensure that different users can keep files confidential (1 per -, max 2 pairs, max 4) [4] 2 - Much of the work will involve text files produced by the students - speed of processors not important - Storage of work may be: - central on a shared large volume hard drive - or on individual memory sticks requiring USB ports (accept floppy drives) - Video of drama productions of literary works - star/high speed network requirements (optic fibre) - requires large volume storage. - Printers need only be monochrome because of type of work to be output -Unless media studies is mentioned needing high quality colour printing - Credit for extra storage device, with reason - CDRW to back up students' work from hard drive.

(1 per -, max 7)

[7]

- Credit for mention of need for system to be compatible with others in school.

3	а	 Array may become full because of a lot of print jobs being sent together/end of lesson Linked list does not needlessly take up space in memory Print jobs may be inserted into queue if they have a high priority. (1 per -, max 2) 	f [2]
		In any form (can alter depending on which end of list is front of queue) - Find print Q in head of list table i) - Insert data into free space - H of L points to new node - new node points to old first value - mention of insertion of high priority jobs into queue ii) - follow pointers to null pointer - read address of print job - move null pointer to previous node - return node to free space (1 per -, max 3 per dotty, max 5)	[5]
4		Data: Personal contact details Financial details/credit card numbers/account numbers Problems: Details of cards not typed in/communicated accurately Hackers attacking communications Hackers attacking customer/order database Workers misusing data Data being distributed, leading to unsolicited communications Some potential customers could be put off by worries about use of data Solutions: Validation of data input e.g. check digit Verification of communication e.g. Parity Encoding data Digital signatures Passwords to enter database Workers subject to data protection legislation/confidentiality contracts. Company publishes code of conduct to increase confidence of users. Workers not allowed portable storage devices. (1 per -, max 8)	[8]
5	a b	e.g. Automatic stock control system (accept any sensible application where data valuable) - Accuracy - Less chance of error/less chance of missing something - Up to date - can be kept permanently up to date - VANS - arranges for transfer of data from one place to where it is needed - Data mining - the ability to trawl large quantities of data to find relevant information (1 per -, max 3 pairs, max 6)	is [1]

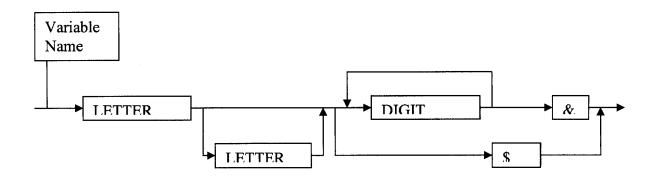
JUNE 2007 MARK SCHEME

6	а	(i) - The value to be searched for is passed/in this case the actual name "SMITH" passed	
		 (ii) - The address of the value is passed/The location of the name is passed (allowing to be altered if necessary). 	ing it [2]
	b	 (i) - The value of the variable only exists in the procedure - The counter used to control the loop (so that it does not effect a repeat use of variable). 	the
		 (ii) - the value of the variable exists throughout the code of the program the variable used to hold the details searched for (needs to be used outside the procedure). 	ie
		(Note: Other examples are fine with reasonable explanation.1 per -, max 4)	[4]
	С	 Interpreter translates one command at a time and runs it before the next is translated. Used during writing because it aids debugging (Compiler translates whole program) into object code (before running) 	
		- Runs faster once it has been called/may be held as a library routine(1 per -, max 4)	[4]
	d	 Decides where to place programs and procedures Loads program and procedures into memory Adjusts memory addresses to match locations used 	
		(1 per -, max 2)	[2]
7	а	Instructions and data stored together in same memory Single processor used	
		Uses serial processing of instructions(1 per -, max 2)	[2]
	b	(i) - many processors are used simultaneously	
		 - all doing some processing required by the application - Special non-linear programs must be produced 	
		(1 per -, max 2)(ii) - A suitable example e.gWeather forecasting.- Large amount of processing required	[2]
		 the results from which are time sensitive (1 for application, 1 for reason) 	[2]
8	а	 Production of a test prototype would be very expensive Time taken to produce and test a prototype may be too long/immediate need Need to test in circumstances unable to be reproduced 	
	b	 - May be too dangerous to test in reality - Situations can be reproduced which may never arise in ordinary testing (1 per -, max 3) - No positive reasons of time/danger 	[3]
		 Impossible to simulate a physical action like cutting grass Lawn mower can be produced easily 	
		 large quantity will be sold so prototype costs easily covered (1 per -, max 2) 	[2]

- 9 a Range is decreased...
 - because power of two which the mantissa is multiplying by is decreased.
 - Accuracy is increased...
 - because more digits are represented after the binary point.

[4]

b ½ x 2⁰ (2 marks or 1 for each part) ½ or .5 (2 marks)


[2]

- c A normalised value must have the first two bits of the mantissa different
 - Therefore one must be a 1
 - which must represent either -1 or + $\frac{1}{2}$, but not zero.

[2]

[6]

10

Mark Points:

- Recognisable syntax diagram showing sequence
- Single letter possible
- Two letters, without more, possible
- Single digit possible
- Loop for multiple digits...
- inside \$ loop
- Dollar loop correctly positioned to miss Digits and &
- & after digits loop

(1 per -, max 6)

20/10/05

- External level gives the different views of the data seen by each of the users.

 Conceptual level is an integration of all the user views of the data/abstract representation of the whole database.

 Internal level is the structure used for storage of the data/the logical arrangements of the data for storage.

 [3]
 - b (i) Used to define the data tables
 - Specifies data types and structures
 - Specifies constraints on the data
 - (ii) Allows the user to
 - Insert
 - Update
 - Delete
 - Modify
 - Retrieve

data

(1 per -, max 2 per dotty, max 4)

[4]

- 12 All staff will need training relevant to their work
 - Many staff will find the new systems difficult to learn
 - Type of training important:
 - Course type with trainer
 - restricts learning times/can be intimidating/difficult to satisfy all demands
 - Electronic/Software based
 - Training on system at time user is free/individual training takes away intimidation/allows for practice/repetition
 - Age problem of trainees/young have preconceptions, old have worries of ability
 - Customers have problem with new systems/must learn new procedures
 - Change of enquiries/ordering procedures to on-line
 - Necessary regular upgrades of software and hardware cause repeats of problems as training needs to be repeated.

(1 per -, max 7)

[7]