Surname				Other	Names			
Centre Nur	nber				Candid	late Number		
Candidate	Signat	ure						

General Certificate of Education June 2004 Advanced Level Examination

COMPUTING CPT4 Unit 4 Processing and Programming Techniques

Tuesday 22 June 2004 Morning Session

No additional materials are required. You may use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 65.
- Mark allocations are shown in brackets.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

F	or Exam	iner's Us	е	
Number	Mark	Number	Mark	
1				
2				
3				
4				
5				
6				
7				
8				
Total (Colum	Total (Column 1)			
Total (Colum	n 2)	\rightarrow		
TOTAL				
Examiner's Initials				

M/0204/CPT4 CPT4

Answer all questions in the spaces provided.

- 1 A logic programming language is used to represent, as a set of facts and rules, details of cities of the world. The sets of facts and rules are shown below in clauses labelled 1 to 17.
 - 1. capital (paris).
 - 2. capital (london).
 - 3. capital (lima).
 - 4. capital (caracas).
 - 5. capital (tunis).
 - 6. city_in (paris, france).
 - 7. city in (lima, peru).
 - 8. city_in (toulouse, france).
 - 9. city_in (maracaibo, venezuela).
 - 10. continent (france, europe).
 - 11. continent (peru, south_america).
 - 12. continent (uk, europe).
 - 13. visited (paris).
 - 14. visited (lima).
 - 15. visited (maracaibo).
 - 16. capital_of (City, Country) IF capital (City) AND city_in (City, Country).
 - 17. city_in_europe (City) IF city_in (City, Country) AND continent (Country, europe).

Clause	Meaning
1	paris is a capital
6	paris is in france
10	france is in the continent of europe
13	I visited paris
16	City is the capital of Country if City is a capital and it is in Country
17	City is a city in europe if City is in Country and Country is in europe

(a)	Write the extra clauses needed to express the following facts:	
	(i) london is in the uk	(1 mark)
	(ii) I visited strasbourg	(1 mark)
(b)	The clause city_in (City, france) would return the result: paris, toulouse. Write the result returned by the clause:	
	continent (Country, europe)	(2 marks)
(c)	Complete the rule to list countries that I have visited.	

countries_visited (Country) IF

(3	marks)	

A pr	ocessor with an instruction format of 16 bits and a word length of 16 bits is being used.
(a)	Integers are stored in 2's complement form. What is the possible range of integers that can be stored in a 16-bit word?
	(2 marks)
(b)	The instruction format uses 6 bits for the operator and 10 bits for the operand.
	Operator Operand
	If direct addressing is used, what is the highest address possible?
	(1 mark)
(c)	The main registers involved in the fetch-execute cycle are the Program Counter (PC), the Current Instruction Register (CIR), Memory Address Register (MAR) and the Memory Data Register (MDR). List the steps of the fetch-execute cycle, including how the above registers are used.
	(6 marks)

TURN OVER FOR THE NEXT QUESTION

2

3	For an object-oriented program to store and calculate payroll details for an organisation, an
	Employee class is needed. A subclass has been identified: HourlyPaidEmployee, which has
	an inheritance relationship with class Employee .

(a) Draw an inheritance diagram for the

		(2 marks)
(b)	What is polymorphism?	
		(1 mark)

(c) The **Employee** class has data fields *Name, National Insurance Number, Annual Pay, Gross Pay To Date.*

The class definition for **Employee** is

```
TEmployee = Class
             Public
               Procedure AddNewEmployee
               Procedure AmendEmployeeDetails
               Procedure
                          PrintPaySlip
               Procedure
                          CalculatePay
             Private
               Name :
                        String
               NationalInsuranceNumber
                                           String
               Annual Pay :
                              Currency
               GrossPayToDate :
                                  Currency
           End
```

Monthly pay for an employee object of **TEmployee** class definition is calculated differently from the monthly pay for an employee object of **THourlyPaidEmployee** class definition.

In the case of an employee object of class definition

- **THourlyPaidEmployee**: monthly pay is calculated by multiplying number of hours worked in month by hourly pay rate.
- **TEmployee**: monthly pay is calculated by dividing the annual pay by 12.

An hourly paid employee object needs one additional operation, which collects the number of hours worked in a month.

Write the class definition THourlyPaidEmployee :
(6 marks)

TURN OVER FOR THE NEXT QUESTION

		integers in 16 bits . 18, using two's con	Using binary representation mplement.	, show the steps of
•••••	•••••			
•••••				(4 marks)
(i)	Complete the	ne table below, show tion and the value in	red in main memory at symbolic wing the contents of the men	
	Symbolic	Hexadecimal Popusontation	Binary	Decimal Value
	Address	Representation	Binary Representation	Decimal Value
(ii)	Address Num1	A802		Value (4 marks)

5	(a)	The ASCII code for "A" is denary 65 and for "a" is denary 97. Using a logical OR
		operation, write the necessary assembly language instructions to convert an uppercase
		letter stored in main memory location with address 3C5 into lower case and store the
		result in 3CB.

Opcode	Operand(s)	Comment

(4 marks)

	(b)	What would be the result if the letter in 3C5 was in lower case before your code is executed?
		(1 mark)
6	(a)	What is relocatable code?
		(1 mark)
	(b)	Explain base register addressing and its role in a multi-programming operating system.
		(5 marks)

On a single processor machine the scheduler program for a particular multi-programming, multi-user operating system that supports both *interactive* and *batch processing* maintains a list of currently active jobs and a list of inactive jobs.

The inactive list consists solely of batch jobs, whereas the active list contains a mixture of interactive and batch. New batch jobs are added to the inactive list.

The scheduler transfers batch jobs from the inactive list to the active list when appropriate.

A job on the active list may be running, runnable or suspended.

If it is running it will be at the front of the list.

When a job is completed it is removed from the active list.

(a)	Give two ways in which interactive and batch processing differ.				
	1				
	2				
	(2 marks)				
(b)	State three items of control that could be specified by job control language statements for each batch job.				
	1				
	2				
	3				
(c)	Describe two distinct situations that would lead to a job in the active list being suspended.				
	1				
	2				
	(2 marks)				
(d)	Name an appropriate data structure for storing the list of active jobs.				
	(1 mark)				
(e)	Give two factors that could cause a job to be moved from the inactive list to the active list.				
	1				
	2				
	(2 marks)				

8 A recursively-defined procedure X with three integer parameters is defined below. x DIV y calculates how many times y divides exactly into x. For example 7 DIV 3 = 2.

```
Procedure X (E,L,H)
  If L > H
    Then Print 'False'
    Else M \leftarrow (L+H)DIV 2
      If E = List[M]
        Then Print 'True'
        Else
           If E < List[M]</pre>
             Then X (E,L,M-1)
             Else X (E,M+1,H)
           Endif
      Endif
  Endif
EndProc
```

What is meant by recursively-defined?

(1 mark)

Using the table below, dry-run the procedure call X (6502, 1, 11) applied to the (b) integer array *List* containing the following elements:

Index	List		
1	1234		
2	1789		
3	3125		
4	4789		
5	5006		
6	5789		
7	6502		
8	7411		
9	8407		
10	8971		
11	9053		

E	L	Н	M	List[M]	Printed Output

(7 marks)

(ii) What process does procedure X describe?

(2 marks)

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE