Surname						Other	Names			
Centre Nun	mber					Candid	late Number			
Candidate Signature										

General Certificate of Education June 2003 Advanced Level Examination

COMPUTING CPT4 Unit 4 Processing and Programming Techniques

Monday 16 June 2003 Morning Session

No additional materials are required. You may use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 65.
- Mark allocations are shown in brackets.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

For Examiner's Use									
Number	Mark	Number	Mark						
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
Total (Colum	n 1)	\rightarrow							
Total (Colum	n 2)	\rightarrow							
TOTAL									
Examiner's Initials									

Copyright © 2003 AQA and its licensors. All rights reserved.

Answer all questions in the spaces provided.

-	Desc	cribe how the elements in a non-empty queue are reversed with the aid of a stack.	
	•••••		•••••
	•••••		•••••
		(4	 marks)
	(a)	Describe the vectored interrupt mechanism.	
	(b)	How does this mechanism make the use of interrupts more flexible?	marks)
			•••••
			•••••
		(1	mark)
	One	of the concepts of Object Oriented Programming is containment.	
	Class	s TForm1 inherits from class TForm.	
	A for	rm, Form1, of class TForm1, contains 2 buttons, Button1 and Button2, of class Tl	Button.
	Write	e the class definition for TForm1.	
		/3	 marks)

(a)	The number 0111 0010 1011 1101 is stored in twos complement notation in 16 bits with the most significant 10 bits representing the mantissa and the least significant 6 bits representing the exponent.											
	(i) Is this number positive or negative?											
	(ii) Estimate the magnitude of this number. Circle	the correct answer below.										
	$>2^{32}$ Between 2^{16} and 2^{32} Between	ween 2^2 and 2^{-2} <2 ⁻²										
(b)	b) The number 0110 0001 0100 1000 is stored in the sinto denary.	(2 marks) same format. Convert this number										
		(3 marks)										
(c)	c) (i) Give one advantage of fixed point over floating point representation.											
	(ii) Under what circumstances would fixed point floating point?	representation be used rather than										
		(2 marks)										
(a)	a) A process is a program whose execution has start reasons why a process might not execute continuous environment.											
	1											
	2	(2 marks)										
(b)	Distinguish between <i>processes</i> and <i>threads</i> in a mul-	ti-programming environment.										
		(2 marks)										

4

6	The list Days	contains the	following	representation	of the	days of	the week.
---	----------------------	--------------	-----------	----------------	--------	---------	-----------

[Sun, Mon, Tue, Wed, Thu, Fri, Sat]

The table below shows some functions which take a list as their single argument and return a result which is either an element of a list, another list, or a Boolean value.

Head(list) – returns the element at the head of **list** (e.g. Head(Days)→ Sun) if **list** is non-empty otherwise it reports an error.

Tail(list) – returns a new list containing all but the first element of the original list (e.g. Tail(Days)→ [Mon, Tue, Wed, Thu, Fri, Sat]) if **list** is non-empty otherwise it reports an error.

Empty(list) – returns True if **list** is the empty list or False otherwise. The empty list is denoted by [].

	(a)	What i	result is returned when the following function calls are made?	
		(i) H	Head (Tail(Days))	(1 mark)
		(ii)	Tail ([(Head(Days)])	(1 mark)
		(iii) I	Empty(Tail(Tail(Tail(Days))))	(1 mark)
	(b)		in why it is faster to access these elements if the above data is stored asional array.	as a one
		•••••		
			(2 marks)
7	In th	e contex	ext of memory management, explain the following terms:	
	(a)	virtual	1 memory;	
		•••••		
		•••••	(3 marks)
	(b)	paging	g.	
				3 marks)

8 An algebraic expression is represented in a binary tree as follows.

- (a) On the above diagram, circle and label the *root* of this tree, a *branch* and a *leaf node*.

 (3 marks)
- (b) In the spaces below, draw the *left sub-tree* and the *right sub-tree* of this tree.

left sub-tree	right sub-tree

(2 marks)

(c) What is the result if this tree is printed using in-order traversal?

(3 marks)

TURN OVER FOR THE NEXT QUESTION

9 A computer design company has produced a design for an elementary computer. It is to be used to teach students about machine architecture, machine operations and the design of an *instruction set*.

The current instruction register has a length of 16 bits.

The accumulator has a length of 16 bits.

The size of each memory location is 16 bits.

The current instruction register is designed to hold one instruction at a time.

A machine instruction is 16 bits in length.

The most significant eight bits of a machine instruction denote the machine operation. The least significant bits denote an operand or the address of an operand.

Operand field -

Main memory stores both instructions and data.

The structure of a machine instruction is as follows.

Operation code field-

Bit no.	15							8	7							0
ĺ																
	←	_Basic	e machi	ne opei	ation_			essing ode								
(a)	Def	ine t	he ter	m ins	tructi	on se	t.									
		•••••			•••••			•••••	•••••	•••••			•••••	•••••		
		•••••								•••••				•••••		
															,	1 mark)
(b)			bits o sic m								ote ba	isic n	nachir	ne op	eratio	ns, how
		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		 1 mark)
(c)			ferencing mo		the op	perano	d fiel	d of a	a mac	hine	instru	ection	, desc	cribe	the fo	llowing
	(i)	Im	medi	ate:												
															(1 mark)
	(ii)	Di	rect:		•••••	•••••		•••••		•••••				•••••		•••••
		•••	•••••							•••••				•••••		······································
	<i></i>	_													,	1 mark)
	(iii)	lno	direct	:	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
		•••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
		•••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	•••••		•••••	•••••			•••••	(2	marks)

(d) The following machine operations have their operation codes expressed in hexadecimal.

Machine operation	Addressing Mode	Operation Code (hex)	Description
LDA	Immediate Direct Indirect	A1 A2 A3	Load accumulator
STA	Direct Indirect	B2 B3	Store accumulator
ADD	Immediate Direct Indirect	61 62 63	Add operand to contents of accumulator, storing result in accumulator

		Indirect	63	result in accumulator	
(i)		the operation coomal to binary.	de for the op	peration STA for indirect address	ng from
					(1 mark)
(ii)	location		n hexadecim	number 6 to the contents of a main nal is C1, with the result being so nal address AB.	
	Complet machine	-	instructions,	in hexadecimal, to perform this ta	sk on the
	A1 0	6			
				(4 marks)
For t	he given i	nachine:			
(i)		the highest memo dressing?	ry address th	at can be addressed by an instructi	on using
					(1 mark)
(ii)	What is addressing	_	ss that can be	e addressed by an instruction using	indirect
				(2 marks)
				7	urn ove

10		mple logic processing language is used to represent, as a set of facts and rules, the varuction of sentences. The set of facts and rules are shown below in clauses labelled	
	2. 3 3. 4 5. 5 6. 1 7. 1 8. 1 9. 1 11. 8 12. 8	determiner (the). adjective (big). adjective (little). verb (is). verb (climbs). noun (thomas). noun (hill). noun_phrase(X) IF noun(X). noun_phrase(X,Y) IF determiner(X) AND noun(Y). noun_phrase(X,Y,Z) IF determiner(X) AND adjective(Y) AND noun(Z). sentence (A,B,C) IF noun_phrase(A) AND verb(B) AND noun_phrase(C) sentence (A,B,C,D,E) IF noun_phrase(A) AND verb(B) AND noun_phrase(C,D,E). sentence (A,B,C,D,E) IF noun_phrase(A,B,C) AND verb(D) AND noun_phrase(E).	
		use 1 has the meaning 'the is a determiner'. use 9 has the meaning 'X followed by Y is a noun_phrase if X is a determiner and Y in'.	is a
	(a)	Using the given set of facts and rules (1-13) above, give one example of	
		(i) a fact:	•••••
		(ii) a rule: (2 ma	 arks)
	(b)	Using the given set of facts and rules (1–13) above, state whether or not the followsentences are valid.	ving
		(i) thomas climbs the little hill:	•••••
		(ii) the little hill climbs thomas:	 urks)
	(c)	The sentence 'little thomas climbs the hill' is not valid according to the facts and r $(1-13)$ above. Write a further rule or set of rules which would make it valid.	rules
			•••••
			•••••
		(6 та	 irks)

END OF QUESTIONS

 $\left(\frac{10}{10}\right)$