| Surname | | | | | | | |---------------------|--|--------|-------------|--|--|--| | Centre Number | | Candid | late Number | | | | | Candidate Signature | | | | | | | General Certificate of Education January 2003 Advanced Level Examination ## COMPUTING CPT4 Unit 4 Processing and Programming Techniques Thursday 23 January 2003 Morning Session **No additional materials are required.** You may use a calculator. Time allowed: 1 hour 30 minutes ## **Instructions** - Use blue or black ink or ball-point pen. - Fill in the boxes at the top of this page. - Answer **all** questions in the spaces provided. All working must be shown. - Do all rough work in this book. Cross through any work you do not want marked. ## **Information** - The maximum mark for this paper is 65. - Mark allocations are shown in brackets. - You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate. - The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account. | For Examiner's Use | | | | | | | |---------------------|------------|---------------|------|--|--|--| | Number | Mark | Number | Mark | | | | | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | Total | L | \rightarrow | | | | | | | (Column 1) | | | | | | | Total -> (Column 2) | | | | | | | | TOTAL | | | | | | | | Examiner's Initials | | | | | | | ## Answer all questions in the spaces provided. | 1 | (a) | (i) | The birds Pheasant, Teal, Widgeon, Partridge, Woodpigeon are entered, in the order given, into a linked list so that they may be processed alphabetically. Draw this linked list. | |---|-----|-------|---| | | | | (2 marks) | | | | (ii) | Redraw the list after two additional items, Grouse and Snipe, are added. | (2 marks) | | | (b) | | linked list is said to be a <i>dynamic structure</i> . What is meant by the term dynamic sture? | | | | | | | | | ••••• | (2 marks) | | | (c) | Expl | ain how memory was allocated for the two additional data items. | | | | ••••• | | | | | ••••• | (2 marks) | | | | | | | (i) | word | er on a standalone PC is working on a report which involves switching between a l-processed document and a spreadsheet, while occasionally looking at the Internet information. | |--------------|----------|--| | (ii) | | mputer system is running in batch mode overnight with a queue of jobs to be done. e one job is waiting for input or output, another job is using the processor. | | (iii) | | umber of terminals communicate with a central computer which allocates essing power to each terminal in turn. | | | | (3 marks) | | | | | | | | earch and a <i>linear</i> search are two different methods of searching a list. st contains 137 items. | | | | | | A gi | ven lis | st contains 137 items. What is the maximum number of items accessed when searching for a particular | | A gi | ven lis | What is the maximum number of items accessed when searching for a particular item from the given list using a binary search? | | A gir
(a) | (i) (ii) | What is the maximum number of items accessed when searching for a particular item from the given list using a binary search? Explain your answer. What is the maximum number of items accessed when searching for a particular | | P:\TL01>cd May 2001 | | |--|---| | P:\TL01\May 2001>dir Volume in drive P has no label. Volume Serial Number is E04F-F00A | | | Directory of P:\May 2001 | | | <dir> 28/05/01 11.37a <dir> 28/05/01 11.37a Seniors <dir> 30/05/01 04.16p Juniors <dir> 30/05/01 04.15p Summer 92,160 31/05/01 10.37a 5 File(s) 92,160 bytes</dir></dir></dir></dir> | | | What type of operating system interface is shown above? | | | | (1 mark) | | What program receives the instructions entered via this inte | rface and analyses them? | | | (1 mark) | | Give two advantages of this type of interface over alte interface. | rnative types of operating | | 1 | | | | | | 2 | | | | (2 marks) | | Give one disadvantage of this type of interface over altesystem interface. | ernative types of operating | | | | | | (1 mark) | | | P:\TL01\May 2001>dir Volume in drive P has no label. Volume Serial Number is E04F-F00A Directory of P:\May 2001 . | 4 | 5 | (a) | (i) | Convert the hexadecimal number BD93 to binary. | |---|-----|-------|--| | | | | (1 mark) | | | | (ii) | The contents of register A is 1011 1010 0000 0011. These bits are a representation of a number in twos complement, with the leftmost 10 bits as the mantissa and the rightmost 6 bits as the exponent. | | | | | Convert this number into decimal. Use the space below to show your working. | (3 marks) | | | (b) | Give | two reasons why floating point numbers are normalised. | | | | 1 | | | | | ••••• | | | | | 2 | | | | | ••••• | (2 marks) | | | | | | | The Arithmetic-Logic Unit (ALU) is that part of the processor which performs operations on the data. <i>Arithmetical</i> and <i>logical</i> are two different types of operation. | | (; | 6 | |---|---------|----|---| | ADD is an arithmetic operation; AND is a logical operation. Both combine two sets of binary digits. What is the difference between their operation? | | | | | | | | | | | ••••• | | | | (2 marks) | ••••• | | | | (i) In order to process data, a sequence of operations is frequently required. As each of these operations is executed, where are the results stored? | (b) (i) | (1 | | | (1 mark) | | | | | (ii) Why is it more efficient storing intermediate results in this location rather than in main memory (IAS)? | (ii) | | | | | | | | | (2 marks) | | | | | In a simple logic processing language, a family group is connected by the following facts and rules. | |---| | father (alan, edward) father (chris, fiona) father (chris, jane) father (edward, liam) mother (barbara, edward) mother (diana, fiona) mother (diana, jane) mother (fiona, liam) mother (jane, michelle) grandfather (W,X) IF father (W,Z) AND mother (Z,X) grandfather (W,X) IF father (Z,X) AND father (W,Z) | | Clause (1) says that alan is the father of edward. Clause (10) says that W is the grandfather of X if W is the father of Z and Z is the mother of X. | | (a) Use the above information to find liam's grandfathers, clearly identifying the relevant clauses in each case. | | | | (2 marks) | | (b) Two people are cousins if they have the same grandfathers. Write a clause which would define cousin. | | | | (3 marks) | | (c) Logic programming is particularly suited to specific types of problem. Give two examples of these. | | 1 | | 2(2 marks) | 7 | 8 | (a) | Desc | eribe each of the f | following a | ddressin | g modes. | | | |---|-----|--------|---------------------|-------------|-----------|--|----------|-----------| | | | (i) | Immediate addr | essing | ••••• | | | | | | | | | | | | | | (1 mark) | | | | (ii) | Direct addressin | ng | ••••• | | | | (2 marks) | | | | (iii) | Indexed address | ing | (2 marks) | | | (b) | Stora | age locations 120 | onwards h | old the v | ralues as shown below | v. | | | | | | | 120 | 1 | | | | | | | | | 121 | 2 | | | | | | | | | 122 | 3 | | | | | | | | | 123
124 | 4 | | | | | | | | | 124 | 5
6 | | | | | | | | | 120 | Ü | | | | | | | initia | | | | ogram. If the accumo
would each hold afte | | | | | | | | Instruction | on | At start | Acc
0 | Reg X | | | | (i) | LDX #5 | ;load imn | nediate 5 | into register X | | | | | | (ii) | LDA #120 | ;load imn | nediate 1 | 20 into Accumulator | | | | | | (iii) | ADD 120 | ;add direc | ct 120 in | to Accumulator | | | | | | (iv) | ADD X (120) | ;add inde | xed 120 | into Accumulator | | | (4 marks) | 9 (a) | | could an operating system allow two files with the same filename to be stored on ame floppy disk? | |--------------|---------------|--| | | ••••• | | | | ••••• | (1 mark) | | (b) | | ediately after formatting a new 1.44 Mb floppy disk, the following message appears ne screen: | | | | Bytes free = $1,457,664$ | | | | hecking the properties, the capacity is said to be 1.38 Mb. Give two reasons why f the disk capacity is not available to the user. | | | 1 | | | | | | | | 2 | | | | | (2 marks) | | (c) | where
each | file management sub-system and the memory management sub-system are called a command is entered to load an executable file from disc. Describe the role of of these sub-systems in this operation, and state one error that each might have to with. | | | (i) | The file management sub-system | | | | | | | | | | | | | | | | Error | | | (ii) | The memory management sub-system | | | | | | | | | | | | | | | | Error | | 10 | (a) | State two advantages of the object-oriented approach to program design over the structured approach to program design. | |----|-----|---| | | | 1 | | | | | | | | 2 | | | | (2 marks) | | | (b) | A sailing club has both junior and senior members. Each member has a unique membership number, a name and an address recorded. Three classes have been identified: | | | | Member
JuniorMember
SeniorMember | | | | The classes JuniorMember and SeniorMember are related, by single inheritance, to the class Member. Draw an inheritance diagram for the given classes. | (2 marks) | | | (c) | Programs that use objects of the class Member need to add a new member's details, amend a member's details, and show a member's details. No other form of access is to be allowed. Write a class definition for this class. | | | | Member = Class | End; (4 marks) |