Surname					Names			
Centre Number	tre Number				Candid	late Number		
Candidate Signature								

General Certificate of Education January 2003 Advanced Subsidiary Examination ASSESSMENT and
QUALIFICATIONS
ALLIANCE

COMPUTING CPT1 Unit 1 Computer Systems, Programming

Tuesday 14 January 2003 Afternoon Session

and Networking Concepts

No additional materials are required. You may use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

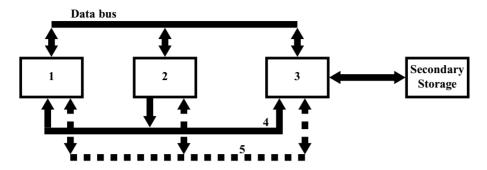
Information

- The maximum mark for this paper is 65.
- Mark allocations are shown in brackets.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

For Examiner's Use					
Number	Mark	Number	Mark		
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
Total (Column 1)					
Total → (Column 2)					
TOTAL					
Examin	er's Initia	als			

Copyright © 2003 AQA and its licensors. All rights reserved.

Answer all questions in the spaces provided.


1	(a)	Wha	t is meant by
		(i)	Hardware;
			(1 mark)
		(ii)	Software?
			(1 mark)
	(b)	Is an	operating system hardware or software?(1 mark)
	(c)	Is a	data bus hardware or software?
2	Bit p	attern	s can be interpreted in a number of different ways.
	(a)	A co	mputer word contains the bit pattern 0001 0111.
		Wha	t is its decimal value if it represents
		(i)	a pure binary integer;
		(ii)	a BCD (Binary Coded Decimal)?(1 mark)
	(b)		mputer system uses odd parity. The most significant bit (MSB) is used as a parity The ASCII value for the character '!' is decimal number 33.
		(i)	What would be the 8-bit binary pattern to represent the character '!'?
			MSB (2 marks)
		(ii)	Asynchronous data transmission is used if one character is sent at a time. One start bit marks the beginning of a character and one stop bit marks the end of a character.
			What would be the bit pattern if the character '!' above is sent using asynchronous data transmission?
			(1 mark)

(a)		t extra hardware is needed for eables?	ach stand-alone computer to be connected to a LAN
			(1 mark,
(b)	Com	puters could be connected in o	ne of the topologies shown below.
			→ → → → → → → → → →
		Topology A	Topology B
	(i)	Name these network topologic	es.
		A	B(2 marks
	(ii)	Give one advantage of topolo	,
	(:::)	Circums almost a of towards	(1 mark)
	(iii)	Give one advantage of topolo	gy B over topology A.
(c)	(i)	What is a protocol?	(1 mark)
			(1 mark)
	(ii)	Why is a protocol needed?	(1

4 Some of the components of a computer system are processor, main memory, address bus, data bus, control bus, I/O port and secondary storage.

The diagram above shows how these components are connected.

	_	•
(a)	Nam	e each of the following:
	1	
	2	
	3	
	4	
	5	(5 marks)
(b)	(i)	What is the function of the following components:
		processor;
		main memory;
		secondary storage?
		(3 marks)
	(ii)	Give two examples of a signal carried by the control bus.
		1
		2
		(2 marks)
	(iii)	Apart from data, what else is carried on the data bus?
		(1 mark)

The following code is part of a high level language program to manage a telephone contact Const Max = 200Type TMember = RecordName: String TelNo: String Age: Integer EndRecord Var Member: Array [1..Max] Of TMember Procedure FindTelNo (WantedName: String) Var EndOfList: Boolean **Begin** EndOfList := False Ptr := 1While WantedName <> Member[Ptr].Name And Not EndOfList Do Ptr := Ptr + 1If Ptr > Max Then EndOfList := True EndWhile If EndOfList Then Print ('Name not in list') Else Print (Member[Ptr-1].Name, 'tel: ', Member[Ptr-1].TelNo) EndIf End (a) Identify the following by copying **one** relevant statement from the above code. (i) constant definition: (1 mark) (ii) assignment statement: (iii) selection statement: (iv) iteration: (1 mark) (b) Identify the following by copying **one** relevant part statement from the above code. (i) user-defined type: (1 mark) (ii) parameter: (1 mark) (iii) local variable: (1 mark)

QUESTION 5 CONTINUES ON THE NEXT PAGE

	Max	is it considered to be good programming practice to use named constants such as ?
		(1 mark)
(d)	(i)	Why is it not good design to use a field Age when storing personal details?
		(1 mark)
	(ii)	What could the programmer have done instead?
		(1 mark)
(e)	Wha	t values can a Boolean expression take?
		(1 mark)
		graphics the type, dimension and position of every graphic element making up an recorded, such as the start and end points, the thickness and colour of a line.
	ge are	
imag	ge are	recorded, such as the start and end points, the thickness and colour of a line.
imag	ge are	recorded, such as the start and end points, the thickness and colour of a line.
imag	ge are	
imag	How	recorded, such as the start and end points, the thickness and colour of a line. is a colour image represented in bit-mapped graphics?

7	Traditionally, sound was recorded in analogue form, such as on vinyl records. For	digital
	audio systems, the signals received from the microphone are sampled and the measure	ment of
	the amplitude can be stored as digital data. To reproduce the sound, the digital dat	a is fed
	through a digital-to-analogue converter.	

(a)	Give two factors which affect the quality of sound.
	1
	2
	(2 marks)
(b)	What is possible when using the digital method of representing sound that could not be done with the sound recorded in analogue form?
	(1 mark)
(c)	What is sound synthesis?
	(1 mark)

- Members of the public can register with a video club after supplying their name and address and proof of identity. Every registered member is issued with a membership card. Each time a member borrows a video, data about the video and the borrower are collected, by scanning the barcodes on the video box and on the membership card.
 - (a) Sources of data can be *direct* and *indirect*. Complete the table below with the correct type of source.

		Direct/Indirect
(i)	The data collected above is used to record where a particular video is.	
(ii)	The data collected above is used to build up a profile of the members for targeted advertising.	

(2 marks)

QUESTION 8 CONTINUES ON THE NEXT PAGE

(b)	Wha	at is the difference between data and information?	
	•••••		••••••
	•••••	(2 n	narks)
		a large number of programming languages. System software such as <i>compas, interpreters</i> are used to translate programs into machine instructions.	pilers,
(a)	Expl	lain the different ways in which a compiler and an interpreter operate.	
	(i)	a compiler	
		(1	 mark)
	(ii)	an interpreter	
		(1	 mark)
(b)		oth a compiler and an interpreter are available for a particular program ruage, under what circumstances would it be preferable to use:	nming
	(i)	a compiler;	
		(1	 mark)
	(ii)	an interpreter?	
		(1	 mark)
(c)	In w	hat way does an assembler differ from a compiler?	
	•••••		••••••
		(1	 mark)

10 The algorithm below re-arranges numbers stored in a one-dimensional array called **List**. **Ptr** is an integer variable used as an index (subscript) which identifies elements within **List**. **Temp** is a variable, which is used as a temporary store for numbers from **List**.

```
Ptr ← 1
While Ptr < 10 Do

If List [Ptr] > List [Ptr+1] Then

Temp ← List [Ptr]

List [Ptr] ← List [Ptr+1]

List [Ptr+1] ← Temp

Endif

Ptr ← Ptr+1

Endwhile
.....
```

(a) Dry-run the algorithm by completing the table below.

It is only necessary to show those numbers which change at a particular step.

Ptr	Temp					Li	ist				
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
		43	25	37	81	18	70	64	96	52	4

(7 marks)

(b)	What will happen when Ptr =10?
	(1 mark)
(c)	If the whole algorithm is now applied to this rearranged list, what will be the values of:
	(i) List[1]
	(ii) List[9]
	(iii) List[10]?

END OF QUESTIONS