Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A level

1091/01

CHEMISTRY CHI

P.M. TUESDAY, 15 May 2012

FOR EXAMINER'S USE ONLY		
Section	Question	Mark
A	1-5	
В	6	
	7	
	8	
	9	
	10	
TOTAL MARK		

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- copy of the **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A** (10 marks) and **Section B** (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The QWC label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

SECTION A

Answer all questions in the spaces provided.

1.	Sketch a diagram to show the shape of a p orbital.	[1]
2.	Complete the following definition of <i>relative atomic mass</i> :	[1]
	The relative atomic mass of an element is the average mass of one atom of the elem	ent relative to
3.	State which one of the following contains the greatest number of molecules.	[1]
	A 3 g of hydrogen	
	B 32 g of oxygen	
	C 36g of water	
	D 66 g of carbon dioxide	
4.	Phosgene is a compound of carbon, oxygen and chlorine. It is used to make polypolycarbonates. Its percentage composition, by mass, is as follows.	urethanes and
	C 12.1% O 16.2% C1 71.7%	
	(a) Calculate the empirical formula of this compound.	[2]
	(b) What other information would you need to know to be able to deduce formula of this compound?	the molecular [1]
1181		

5. (a) The electronic structures of five atoms, A to E, are listed below. Arrange these atoms in order of increasing molar first ionisation energy. [2]

Atom	A	В	C	D	E
Electronic structure	$1s^2$	$1s^2 2s^2$	$1s^2 2s^2 2p^1$	$1s^2 2s^2 2p^3$	$1s^2 2s^2 2p^6$

(b) State, giving a reason for your choice, which **one** of the following gives the first four ionisation energies for silicon, Si. [2]

	Ionisation energy / kJ mol ⁻¹			
	1st	2nd	3rd	4th
W	496	4563	6913	9544
X	578	1817	2745	11578
Y	738	1451	7733	10541
Z	789	1577	3232	4356

Letter
Reason

Section A Total [10]

SECTION B

Answer all questions in the spaces provided.

6.	indu	stry it	m is best known for burning with a characteristic brilliant white light, however in is the third most commonly used structural metal. The metal itself was first produced appropriately play in 1808 by the electrolysis of a mixture of magnesia and mercury oxide.
	(a)	Mag	gnesium has three stable isotopes ²⁴ Mg, ²⁵ Mg and ²⁶ Mg.
		(i)	State the number of protons present in an atom of ²⁴ Mg. [1]
		(ii)	Deduce the number of neutrons present in an atom of ²⁶ Mg. [1]
		(iii)	In order to calculate the relative atomic mass of magnesium, what would you need to know in addition to the relative mass of each isotope? [1]
	(b)	Mag	nesium also has a radioactive isotope ²⁸ Mg which has a half-life of 21 hours.
		(i)	If you started with 2.0 g of ²⁸ Mg, calculate the mass of this isotope remaining after 84 hours. [1]
		(ii)	Name one useful radioactive isotope and briefly describe how it is used in medicine, industry or analysis. [2]

(ii)) Give a reason	n why it is necess	sary to ionise	the magnesiur	n atoms in	the sampl
(iii)) State how the	e ions of magnes	sium are sepa	rated.		
cor By	agnesium reacts mpound. inserting arrovectronic configur	ws to represent	electrons, co			
1s	2s	2p		3s	3	p
Ma	agnesium nitride	e reacts with wat	er to form ma	agnesium hydr	oxide and	ammonia
	Mg_3N_2	H ₂ O -		Mg(OH) ₂	+	NH ₃
(i)) Balance the 6	equation above.				
(ii)		e minimum mas nydroxide, giving				

7. Judith carried out three experiments to study the reaction between powdered magnesium and hydrochloric acid.

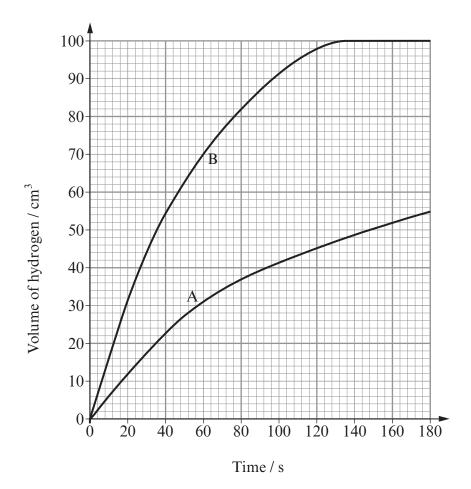
She used a gas syringe to measure the volume of hydrogen evolved, at room temperature and pressure, at set intervals. In each case, the amount of acid used was sufficient to react with all the magnesium.

$$Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$$

The details of each experiment are shown in Table 1 below.

Experiment	Mass of magnesium / g	Volume of HCl / cm ³	Concentration of HCl / mol dm ⁻³
A	0.061	40.0	0.50
В	0.101	40.0	1.00
C	0.101	20.0	2.00

Table 1


The results obtained in experiment **C** are shown in Table 2 below.

Time / s	Volume of hydrogen / cm ³
0	0
20	50
40	75
60	88
80	92
100	100
120	100

Table 2

(a) The results for experiments A and B have already been plotted on the grid below. On the same grid, plot the results for experiment C and draw a line of best fit. [3]

(b) State in which experiment the reaction begins most rapidly and use the graph to (i) explain your choice.

By referring to Table 1 give an explanation of your answer in part (i). (ii) [1]

(c) State the volume of hydrogen evolved after 30 seconds in experiment **B**. [1]

(1091-01)

Turn over.

(d)	Usin	ng only the values in Table 1, show that the acid is in excess in experiment C . [2]
(e)	(i)	In experiment A, 0.061 g of magnesium produces 60 cm ³ of hydrogen. If 0.122 g of magnesium were used, under the same conditions, then 120 cm ³ would be produced. Explain why using 0.610 g would not produce 600 cm ³ of hydrogen. [1]
	(ii)	Calculate the volume of hydrogen produced using 0.610 g of magnesium. [2] (1 mole of gas molecules occupies 24 dm³ at 25 °C)
(f)	to ex	e one method of slowing down the reaction in experiment C and use collision theory cplain your choice. Assume that the quantities of magnesium and hydrochloric acid he same as those in Table 1. [3] QWC [1]

Total [16]

8.	(a) 	The vast majority of motor vehicles worldwide are powered by petrol or diesel which come from crude oil. Give two reasons why we cannot rely indefinitely on oil as a source of transport fuel. [2]
	(b)	Many vehicle manufacturers around the world have made the development of alternative fuels a priority. One such fuel being studied is hydrogen. Its main advantage is that the only waste product is water, however hydrogen does not occur naturally on Earth. It is produced by passing an electric current through water. (i) A leading car manufacturer said, "Cars powered by hydrogen will be pollution-free". Give two reasons why this is not necessarily true. [2] QWC [1]
		(ii) A spokesperson for a safety group said, "Hydrogen can burn explosively. It must not be used in cars unless it is 100% safe". State, giving a reason, whether you agree with this. [1]

(c)	656 r	first line in the visible atomic emission spectrum for hydrogen has a wavelength of nm, while that for helium has a wavelength of 707 nm. e, giving a reason, which line has
	(i)	the higher frequency, [1]
	(ii)	the higher energy. [1]
(d)		first ionisation energy of helium is 2370 kJ mol ⁻¹ while that of neon is 2080 kJ mol ⁻¹ . lain why neon has a lower first ionisation energy than helium. [2]
(e)	deca	ther noble gas is radon. Its more stable isotope 222 Rn has a half-life of 3.8 days, ys by α -emission and is responsible for the majority of the public exposure to ionising ation.
	(i)	Give the symbol and mass number of the atom formed by the loss of one α -particle from an atom of 222 Rn. [1]
	(ii)	Explain why doctors are concerned that an over-exposure to radon may cause lung cancer. [1]
		Total [12]

9.	Ethanol is an important industrial chemical and can be made by the direct hydration of ethene
	using a phosphoric acid catalyst.

re required	(a) State, giving your reasons, the general conditions of temperature and pressure
[4]	to give a high equilibrium yield of ethanol in this process.
QWC[1]	

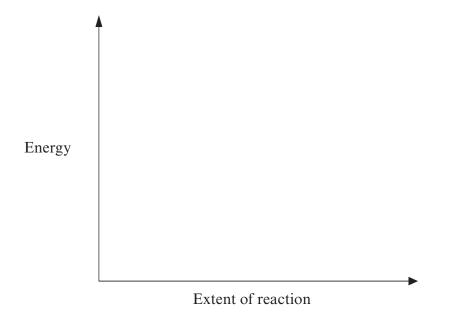
• • • • •	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 • • • • • •	
	 • • • • •	 	 	 • • • • •	 • • • • • •	 	 	 	• • • • •	 	 	 • • • • •	 	 	 	 	 	

(b) Using the standard enthalpy change for the reaction above and the standard enthalpy changes of formation (ΔH_f^{Θ}) given in the table below, calculate the standard enthalpy change of formation of gaseous ethanol. [3]

Compound	$\Delta H \frac{\Phi}{f} / kJ \text{ mol}^{-1}$
$CH_2 = CH_2(g)$	52.3
$H_2O(g)$	-242

•••••	 	•••••	
• • • • • • • • • • • • • • • • • • • •	 		

(c) Another way of calculating the enthalpy change of a reaction is by using average bond enthalpies. Use the values in the table below to calculate the enthalpy change for the direct hydration of ethene. [3]


Bond	Average bond enthalpy / kJ mol ⁻¹
С—С	348
C = C	612
С—Н	412
C—0	360
О—Н	463

(d)	(i)	Give a reason why the calculated value in (c) is different to the actual value, -46 kJ mol^{-1} .	[1]
	(ii)	Explain whether your answer to part (i) supports the use of average bond enthal to calculate the energy change for a reaction.	pies [1]
	•••••		

(e)	Phosphoric acid is an example of a heterogeneous catalyst. Explain the term <i>heterogeneous</i> in this context.	[1]

(f) (i) Sketch on the axes below the energy profile for an exothermic reaction. [1]

(ii) On the same axes, sketch and label the energy profile if the same reaction is carried out using a catalyst. [1]

Total [16]

10. Berian was asked to find the identity of a Group 1 metal hydroxide by titration.

He was told to use the following method.

- Fill a burette with hydrochloric acid solution.
- Accurately weigh about 1.14 g of the metal hydroxide.
- Dissolve all the metal hydroxide in water, transfer the solution to a volumetric flask then add more water to make exactly 250 cm³ of solution.
- Accurately transfer 25.0 cm³ of this solution into a conical flask.
- Add 2-3 drops of a suitable indicator to this solution.
- Carry out a rough titration of this solution with the hydrochloric acid.
- Accurately repeat the titration several times and calculate a mean titre.

Berian's results are shown below:

	Mass of metal hydroxide = $1.14 \mathrm{g}$	
	Concentration of acid solution = $0.730 \mathrm{g}$ HCl in $100 \mathrm{cm}^3$ of water	
	Mean titre = 23.80cm^3	
(a)	Give a reason why Berian does not simply add 1.14g of metal hydroxide to 250c water.	n ³ of [1]
(b)	Name a suitable piece of apparatus for transferring 25.0 cm ³ of the metal hydr solution to a conical flask.	oxide [1]
(c)	State why he adds an indicator to this solution.	[1]
(d)	Suggest why Berian was told to carry out a rough titration first.	[1]
•••••		

(e)	Expl	ain why he carried out several titrations and calculated a mean value.	[1]
(f)		equation for the reaction between the metal hydroxide and hydrochloric below. M represents the symbol of the Group 1 metal. MOH + HCl — MCl + H ₂ O	e acid is
	(i)	Calculate the concentration, in mol dm ⁻³ , of the HCl in the burette.	[2]
	(ii)	Calculate the number of moles of HCl used in the titration.	[1]
	(iii)	Deduce the number of moles of MOH in 25.0 cm ³ of the solution.	[1]
	(iv)	Calculate the total number of moles of MOH in the original solution.	[1]
	(v)	Calculate the relative molecular mass of MOH.	[1]
	(vi)	Deduce the Group 1 metal in the hydroxide.	[1]

Total [12]

Section B Total [70]

n	Write the question numbers in the left-hand margin	Ex
		\Box
		·······
		· · · · · · · · · · · · · · · · · · ·
		·············
•••••		
		······

GCE AS/A level

CHEMISTRY - PERIODIC TABLE FOR USE WITH CH1

P.M. TUESDAY, 15 May 2012

Calcium 20

Potassium

(1091-01A)

Magnesium 12

Sodium

3

40.1

39.1 **K**

24.3 Mg

23.0 \mathbb{N}^{a}

Beryllium

Lithium

9.01 **Be**

6.94

Ľ

 \sim

Hydrogen

1.01 H

s Block

Period

Strontium 38

Rubidium 37

137

133 Cs

87.6 Sr

85.5 **Rb**

5

Barium 56

Caesium

9

(226)

(223)

Fr

Radium 88

Francium

87

THE PERIODIC TABLE