Candidate	Centre	Candidate		
Name	Number	Number		
		2		

GCE AS/A level

1091/01

CHEMISTRY CH1

A.M. THURSDAY, 13 January 2011 1½ hours

FOR EXAMINER'S USE ONLY										
Section	Mark									
A	1-5									
В	6									
	7									
	8									
	9									
10										
TOTAL	MARK									

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- copy of the **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

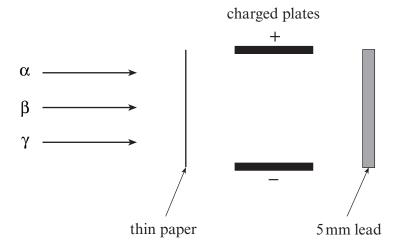
Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.


You are reminded that marking will take into account the Quality of Written Communication used in all written answers.

Page 19 may be used for rough work.

SECTION A

Answer all questions in the spaces provided.

1.	By in	nserting arrowiguration of a	s to repres	ent electron om.	s, complete th	ne boxes b	elow to show the	e electronic [1]
	5	2s	2p	3s	3p		3d	4s
2.	(a)	Calculate the	e molar ma	ss, in gmol ⁻¹	, of calcium si	ulfate dihy	drate, CaSO ₄ .2H ₂	₂ O. [1]
	(b)	Calculate the	percentag	e of water, b	y mass, in calc	cium sulfat	e dihydrate.	[1]
3.	Ions	of two isotope	es of the magnetic $\frac{7}{3}$ L		are shown belo	OW.		
	State	which one of			ts is correct			[1]
	A				hese Li ⁺ ions i	s 1s ² 2s ¹		[1]
	В		_		in its nucleus		Li ⁺ ion.	
	C						ass spectrometer.	
	D	Both of thes	e Li ⁺ ions l	nave the sam	e number of e	lectrons.		

5. A compound of carbon, hydrogen and oxygen has a relative molecular mass of 180. The percentage composition by mass is C 40.0%; H 6.70%; O 53.3%.

(a)	Calculate the empirical formula of this compound.	[2]
<i>(b)</i>	Determine the molecular formula of this compound.	[1]

Section A Total [10]

SECTION B

Answer all questions in the spaces provided.

6.	Potassium metal was discovered in 1807 by the British chemist Sir Humphrey Davy. Its name
	derives from the word 'potash' since potassium was isolated by the electrolysis of molten
	caustic potash, KOH.

(a)	The mass sp	pectrum o	of a	naturally	occurring	sample	of	potassium	gave	the	follow	ing
	results.											

Isotope	% abundance
³⁹ K	93.26
⁴⁰ K	0.012
⁴¹ K	6.730

These results can be used to determine the relative atomic mass of the potassium sample.

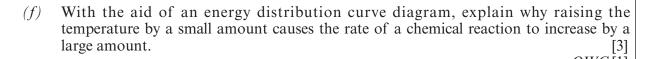
(i)	(ii) Calculate the relative atomic mass of the potassium sample, giving four significant figures. The mass spectrum which provided these results was produced by potamass spectrometer. (i) State how potassium ions are formed in a mass spectrometer.	[2]	
(ii)	Calculate the relative atomic mass of the potassium sample, giving your four significant figures.	r answer to	
	mass spectrum which provided these results was produced by potassiung spectrometer.	m ions in a	
(i)	State how potassium ions are formed in a mass spectrometer.	[1]	
(ii)	State how potassium ions are separated in a mass spectrometer.	[1]	

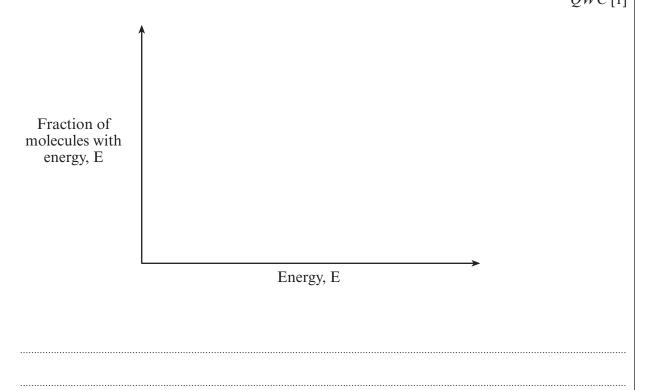
	Potassium-40, $^{40}_{19}$ K, is a radioactive isotope that decays by β -emission and has a half-life of 1.25×10^9 years.											
((i)	Write an equation for the process by which a potassium-40 isotope emits a β -particle. [2]										
 (i	(ii) Calculate how long it will take for the activity of the isotope to decay to its original activity.											
			onisation energies of potassiu	ım and sodium are shown in th								
			1 st ionisation energy / kJ mol ⁻¹	2 nd ionisation energy / kJ mol ⁻¹								
of 1.25 × 10 ⁹ years. (i) Write an equation for the process by which a potassium-40 β-particle. (ii) Calculate how long it will take for the activity of the isotorits original activity. (d) The first and second ionisation energies of potassium and so table below. 1st ionisation energy 2 nd io		419	3051									
	S	odium	496	4562								
(1		I potassium ł										
			rge difference between the first	t and second ionisation energies o								

C	aCO ₃ ((s) +	2HCl(a	q) —		CaCl ₂	(aq)	+ ($CO_2(g)$	+	$H_2O(1)$	1)
(a)	Give	an obse	rvation t	hat Euri	g makes o	during th	nis reac	tion.				[1]
(b)			ce of app		hat he c	ould use	e to co	llect	and m	easur	e the vo	olume of
(c)			ethod, otl s, that Eu									ced at set
(d)	(i)	Calcula	ate the nu	ımber of	moles o	f hydroc	hloric a	acid ı	ısed in	this re	eaction.	[1]
	(ii)		ate the n is amour			`calcium	n carbo	onate	neede	d to 1	react co	ompletely [2]
	(iii)	Calcula (1 mole	ate the vo	on dioxic	carbon o	lioxide g es 24 dm	as that ³ at 25	wou °C.)	ld be p	roduc	ed at 25	5°C. [2]

(e) Eurig repeats the experiment starting with a greater mass of calcium carbonate. He follows the rate of the reaction for 3 minutes.

He takes a number of measurements which include 150 cm³ of carbon dioxide at 1 minute and 200 cm³ at 2 minutes, when the reaction finishes.


(i) Sketch a curve on the grid below to show these results. Label this graph A. [1]



(ii) On the same grid sketch the graph that would be obtained if the experiment were repeated using hydrochloric acid of half the original concentration, keeping all other factors the same. Label this graph **B**. [2]

(iii)	Explain,	using	simple	collision	theory,	why	the	rates	of	these	two	reactions	are
	different.		-										[2]

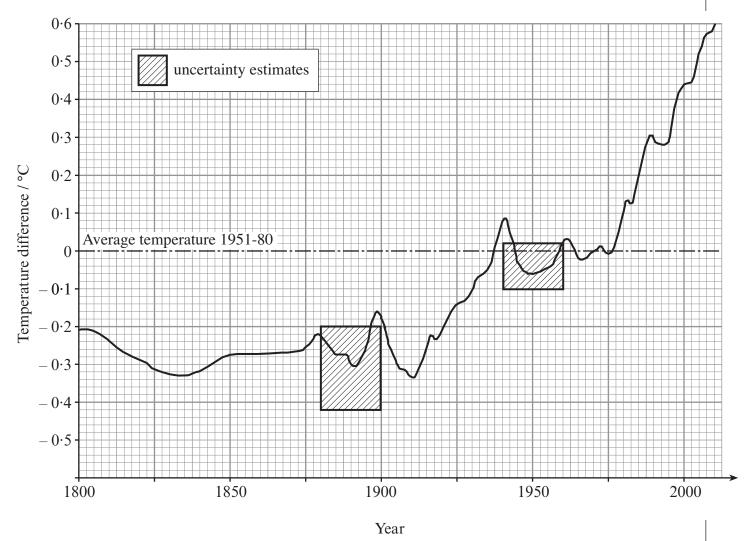
(1091-01) **Turn over.**

Total [17]

91

BLANK PAGE

(1091-01) **Turn over.**


8. (a) During the last 200 years, the average temperature of the Earth has risen. One hypothesis put forward by many scientists is that this is due to increased concentrations of carbon dioxide and other greenhouse gases in the atmosphere.

The table below shows the concentration of carbon dioxide in the atmosphere at 50 year intervals since 1800.

	Year							
	1800	1850	1900	1950	2000			
Concentration of carbon dioxide in the atmosphere / % by volume	0.0282	0.0288	0.0297	0.0310	0.0368			

The following graph based on data from NASA research, shows the annual global temperature relative to the average temperature between 1951 and 1980.

Global Temperature

Explain how these two sets of data led many scientists to this hypothesis. [2] QWC [1]
Suggest why the data does not convince all scientists that this hypothesis is true.[1]
Suggest two reasons why the uncertainty is greater in the period 1880-1900 than the period 1940-1960. [2]
Give two reasons for the changing amounts of carbon dioxide in the atmosphere after 1900. [2]

<i>(b)</i>		Fizzy drinks, carbon dioxide is dissolved in water under pressure and ssure is released the 'fizz' appears.	when the
	In a	bottle of fizzy drink, the following chemical equilibrium exists:	
		$CO_2(g)$ \longleftrightarrow $CO_2(aq)$	
	(i)	Chemical equilibria are often described as dynamic equilibria. Explain the term <i>dynamic equilibrium</i> .	[1]
	(ii)	When the top is removed from a bottle of fizzy drink it goes 'flat' beca of the dissolved carbon dioxide comes out of solution. Explain why this happens in terms of chemical equilibria.	use much [2] <i>QWC</i> [1]
			Total [12]

9.	(a)		diagram below includes the visible atomic emission spectrum of hydrogen ner series).	(the
	-			
	-		increasing frequency —	
		(i)	Label the line of lowest energy on the diagram.	[1]
		(ii)	Explain why the lines become closer together at the high frequency end of spectrum.	the [1]

	$CH_4(g)$ + $H_2O(g)$ \Longrightarrow $CO(g)$ + $3H_2(g)$ $\Delta H = 206 \text{ kJ mo}$
(i)	State Le Chatelier's Principle.
(ii)	Giving your reasons, state how the equilibrium yield of hydrogen is affected all, by
	I increasing the temperature at constant pressure,
	II increasing the pressure at constant temperature.
(iii)	Calculate the atom economy of hydrogen production in the above reaction.

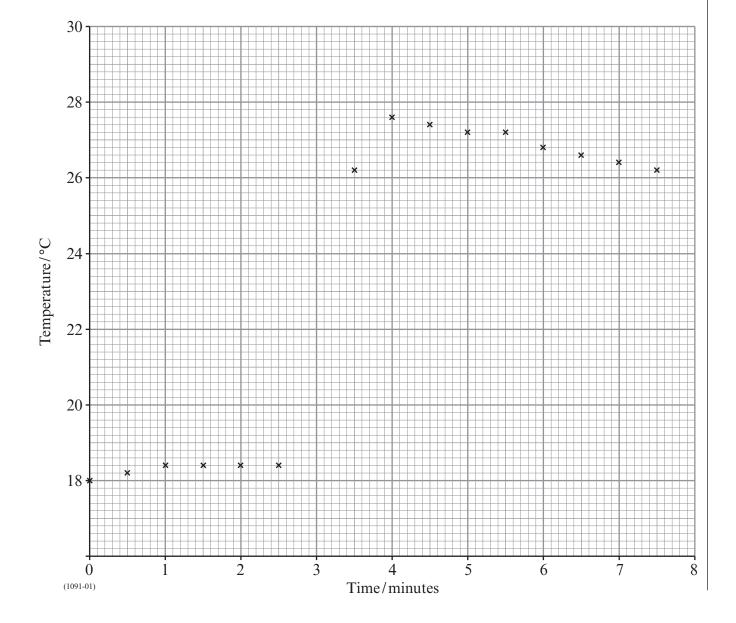
Another way of producing hydrogen is from reforming natural gas.

Use the values in the table below to calculate the enthalpy change for the above reaction.

Bond	Average bond enthalpy/kJmol ⁻¹
C = C	612
C — H	412
H — H	436

	Total [11]

Turn over. (1091-01)


10. Lisa was asked to measure the molar enthalpy change for the reaction between magnesium and copper(II) sulfate solution.

$$Mg(s)$$
 + $CuSO_4(aq)$ \longrightarrow $MgSO_4(aq)$ + $Cu(s)$

She was told to use the following method.

- Weigh out about 0.90 g of powdered magnesium.
- Accurately measure 50.0 cm³ of copper(II) sulfate solution of concentration 0.500 mol dm⁻³ into a polystyrene cup (placed in another polystyrene cup to provide insulation).
- Place a 0.2 °C graduated thermometer in the solution and measure its temperature every half-minute, stirring the solution before reading the temperature.
- At the third minute add 0.90 g of powdered magnesium, but do not record the temperature.
- Stir the mixture thoroughly, then record the temperature after three and a half minutes.
- Continue stirring and record the temperature at half-minute intervals for a further four minutes.

Lisa's results are shown on the graph below.

(a)		lain why the temperature of the copper(II) sulfate solution was measured for three utes before adding the magnesium.
(b)	(i)	Determine the maximum temperature change by drawing lines of best fit for both sets of points and extrapolating both lines to the third minute.
		Temperature rise from the graph after extrapolation°C [2]
	(ii)	Explain why extrapolation gives a more accurate temperature change than using the maximum temperature recorded in the experiment. [1]
(c)	duri (Ass	the temperature rise from the graph to calculate the amount of heat given oung this experiment. Sometiment that the density of the solution is $1.00\mathrm{gcm^{-3}}$ and that its specific heat capacity $18\mathrm{JK^{-1}g^{-1}}$)
(d)	(i)	Calculate the number of moles of magnesium in 0.90 g. [1]
	(ii)	Calculate the number of moles of copper(II) sulfate in 50.0 cm ³ of a 0.500 mol dm ⁻³ solution. [1]
(e)		culate the molar enthalpy change for the reaction between magnesium and per(II) sulfate solution.
(f)		ne a piece of apparatus that Lisa could use to accurately measure 50.0 cm ³ of the tion.

agnesium. [1]	State why she did not need to accurately weigh the powdered magn	(g)
an a strip of magnesium [1]	Explain why it is better to use powdered magnesium rather than ribbon.	(<i>h</i>)
a percentage of the data [1]	The data book value for this molar enthalpy change is –93.1 kJ molar express the difference between Lisa's value and this value as a phook value. (If you do not have an answer in (e) assume that the molar enthal –65 kJ mol ⁻¹ , although this is not the correct answer.)	(i)
and suggest one change [2]	State the main reason for Lisa's low value in this experiment and that would improve her result.	(j)
Total [15] Section B Total [70]		

Rough Work	

GCE AS/A level

1091/01-A

CHEMISTRY CH1 PERIODIC TABLE

A.M. THURSDAY, 13 January 2011

(257)
Lr
Lawrencium
103

(254) No Nobelium 102

(253) Fm Fermium

(254) Es Einsteinium

(251) Cf

(245)
Bk
Berkelium

(247) Cm Curium 96

(243)
Am
Americium

94

Uranium 92

(231)
Pa
Protactinium

232 Th Thorium

► Actinoid elements

91

(242) Pu

(237)
Np
Neptunium

238 U 66

86

(256)

Md

Mendelevium

101

70

69

89

29

99

65

49

63

62

61

09

59

58

THE PERIODIC TABLE

Deriod		7						Ğ	Group				m	4	w	9	7	0
		S Block							Key									4.00 He Helium
1	Hydrogen 1							A,	relative atomic	.ve		,	•		p Block	ock	_	1
2	6.94 Li Lithium	9.01 Be Beryllium						Symbol Name	mass atomic number	<u>.</u>			10.8 B Boron 5	12.0 C Carbon 6	14.0 Nitrogen	16.0 O Oxygen 8	19.0 F Fluorine	20.2 Neon
ω	23.0 Na Sodium	24.3 Mg Magnesium	•				d Block	ock					A1 Aluminium 13	Si Silicon	31.0 P	32.1 S Sulfur 16	35.5 Cl Chlorine 17	40.0 Ar Argon 18
4	39.1 K Potassium 19	40.1 Ca Calcium	45.0 Sc Scandium 21	47.9 Ti Titanium	50.9 V Vanadium 23	52.0 Cr Chromium	54.9 Mn Manganese 25	55.8 Fe Iron 26	58.9 Co Cobalt	S8.7 Ni Nickel	63.5 Cu Copper 29	65.4 Zn Zinc 30	69.7 Ga Gallium 31	72.6 Ge Germanium	As Arsenic	Selenium	Py Py Br Bromine	83.8 Kr Krypton 36
W	85.5 Rb Rubidium 37	87.6 Sr Strontium	88.9 Y Yttrium 39	91.2 Zr Zirconium 40	92.9 Nb Niobium 41	95.9 98.9 Mo Molybdenum Technetium 42 43	98.9 Tc Technetium 43	Ru Ruthenium	103 Rh Rhodium 45	106 Pd Palladium 46	Ag Silver 47	Cd Cadmium 48	In In Indium 49	Sn Tin 50	Sb Antimony 51	128 Te Tellurium 52	I Iodine	Xe Xenon 54
9	133 Cs Caesium 55	137 Ba Barium 56	139 La La Lanthanum 57	Hf Hafnium 72	Ta Tantalum	184 W Tungsten	186 Re Rhenium	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	Hg Mercury	204 T1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Polonium 84	(210) At Astatine 85	(222) Rn Radon 86
7	(223) Fr Francium 87	(226) Radium 88	(227) AC Actinium 89															
			,							f Block	ock							
		►Lan eler	► Lanthanoid elements	Cerium	Praseodymium	141 144 (147) Praseodymium Neodymium Promethium Promethi	(147) Pm Promethium	Sm Samarium	(153) Eu Europium	157 Gd	159 Tb	163 Dy Dysprosium	165 Ho Holmium	167 Erbium	169 Tm Thulium	173 Yb	175 Lu Lutetium	