Mark Scheme 2812 January 2006

CHAINS + RINGS

2812	Mark Scheme	Jan 2006
1(a) (i)	compound/molecule containing hydrogen and carbon only	✓
(ii)	$C_{10}H_{22}$	✓
(iii)	C ₅ H ₁₁ {ecf from (ii)}	✓
(b)(i)	(a particle that) contains/has a single/unpaired electron	✓
(ii)UV	(light) /sunlight/high temp	✓
(iii)	homolytic (fission)/ homolysis	✓
(iv)	$C_{12}H_{26} + Cl \longrightarrow \bullet C_{12}H_{25} + HCl$ (the dot for the free radical does not have to be on the C) $\bullet C_{12}H_{25} + Cl_2 \longrightarrow C_{12}H_{25}Cl + Cl \bullet$	✓ ✓
(v)	six	✓
(c)(i)	$\begin{array}{ccc} C_{12}H_{26} & \longrightarrow 2C_2H_4 & + & 1C_8H_{18} \\ \text{(1 mark for correct formula of octane or ethene)} \end{array}$	√ √
(ii)	octane/ ecf from (c) (i)	✓
(d)(i)		

1 mark for correct reagent and 1 mark for correct product.

(ii) 1 mark for any unambiguous formula of cyclohexane

1 mark for 1H₂ but check that formula of heptane is correct/equation balanced.

[Total: 16]

2812 Mark Scheme Jan 2006

2(a)

- (i) low volatility, = high boiling point/ not easy to vapourise/owtte
 intermolecular bonds. = bonds/forces/attractions between molecules
- (ii) type of intermolecular bond = hydrogen bond

H-bond shown as a 'dashed bond'

dipoles on both O-H bonds

- (iii) (The boiling point of glycerol will be higher than ethanol because there are)
 more OH groups : more H-bonds
- (b) $C_2H_5OH + Na \longrightarrow C_2H_5O^*Na^+ + \frac{1}{2}H_2$ (or multiple of this)

charges are not essential

1 mark for correct formula of sodium ethoxide & 1 mark for correct balancing

(c)

1 mark for partial reaction, 1 mark if all 3 "ONa" are shown as covalent "O-Na"

[Total: 10]

3. (a)(i)

butan-2-ol by name or by formula

(ii)

curly arrow from the O of the OH to $C^{(\delta^+)}$

curly arrow from C-Cl bond to Cl and correct dipoles

correct products/ allow NaCl

curly arrow from lone pair on :OH-

[4]

S_N1 route can still score all 4 marks:

curly arrow from C-Cl bond to Cl and correct dipoles

curly arrow from the O of the OH to C+ ion

correct products/ allow NaCl

curly arrow from lone pair on :OH-

(b) (i) elimination

(ii)

but-1-ene

cis-but-2-ene

trans-but-2-ene

2812 Mark Scheme Jan 2006

(c) (i) ethanol

(ii) $C_4H_{11}N$

C₄H₉-----H C₄H₉

any unambiguous structure/ formula for the secondary amine

[Total: 12]

 2812
 Mark Scheme
 Jan 2006

 4 (a)(i) alkene
 ✓

 bromine
 ✓

 decolourises
 ✓

 (ii) 3-methylhex-2-en-1-ol/ 1-hydroxy-3-methylhex-2-ene
 ✓

 (b) (i) H⁺ ✓ Cr₂O₇²⁻
 ✓

(ii)

(iii) carboxylic acid would have an absorption between $1680 - 1750 \text{ cm}^{-1} / 1700 \text{ cm}^{-1}$ or $2500 - 3300 \text{ cm}^{-1}$.

[Total :12]

margarine

Ni catalyst

✓

hydrogen/ hydrogenated

✓

unsaturated vegetable oil/fat

✓

poly(propene)

equation

two repeat units

✓

(Ziegler) catalyst / high temp/heat/use of an initiator

Problems with disposal

non-biodegradable/don't decompose/not broken down by bacteria etc

✓

when burnt produces toxic fumes

✓

Future methods of disposal

recycling (to produce new polymers)

 \checkmark

incineration for energy (production)

✓

cracking/owtte (to produce useful organic molecules)

use gas scrubbers to reduce toxic fumes

any two

max = 9

OWC

Answer is well organised/structure and using at least three of:

catalyst, hydrogenation, addition polymerisation, Ziegler, incineration, feedstock, recycling, non-biodegradable, initiator, monomer, unsaturated.

in the correct context.

✓

[Total: 10]