Mark Scheme 2816/01 June 2005 UNIFYING CONCEPTS IN CHEMISTRY Downloaded from http://www.thepaperbank.co.uk | Abbreviatio
annotations
conventions
used in the
Scheme | and
s | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | |--|----------|--|-----------|--| | Question | | Expected Answers | Marks | | | i (a) | (i) | constant half-life 🗸 | [1] | | | | (ii) | rate = $k [N_2O_5] \checkmark$
Common error will be to use '2' from equation. | [1] | | | | (iii) | curve downwards getting less steep √
curve goes through 1200,0.30; 2400,0.15; 3600,0.075 √ | [2] | | | | (iv) | tangent shown on graph at t = 1200 s 🗸 | [1] | | | | (v) | $3.7(2) \times 10^{-4} \checkmark \text{ mol dm}^{-3} \text{ s}^{-1} \checkmark$ ecf possible from (ii) using $[N_2O_5]^{\times}$ (2nd order answer: $2.2(3) \times 10^{-4}$) | [2] | | | (b) | (i) | slow step √ | [1] | | | | (ii) | $(CH_3)_2C=CH_2 + H_2O \longrightarrow (CH_3)_3COH \checkmark$ | [1] | | | | (iii) | H⁺ is a catalyst ✓ | | | | | | H ⁺ used in first step and formed in second step/
regenerated/ not used up 🗸 | [2] | | | | (iv) | rate = $k [(CH_3)_2C=CH_2][H^*] \checkmark$
common error will be use of H_2O instead of H^* | [1] | | | | | | Total: 12 | | | | | | | | June 2005 | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | |--|---|-----------|--| | Question | Expected Answers | Marks | | | 2 (a) | High Pressure Equilibrium — right as fewer moles on right hand side and the shift reduces number of molecules/compensates for increasing pressure Rate increases/ more collisions High temperature Equilibrium — left as equilibrium goes to the left to compensate for increased temperature/absorbs the energy/in endothermic direction (ora) | [2] | | | | Rate increases/ more successful collisions <a> Other effect | [2] | | | | High pressures expensive/high temperatures expensive /high pressures cause safety problems ✓ | [1] | | | QoWC: | One correct statement followed by correct explanation 🗸 | [1] | | | (b) (i) | CO H_2 CH_3OH
1.0 2.0 0.0
0.9 1.8 \checkmark 0.1 \checkmark
0.9/2.8 or 0.321 or 0.32/0.3 1.8/2.8 or 0.643 or
0.64/0.6 0.1/2.8 or 0.036 or 0.04 \checkmark
3.21 (MPa) 6.43 (MPa) 0.36 (MPa) \checkmark
In 3rd and 4th rows, ecf from previous row
$K_p = \frac{p(CH_3OH)}{p(CO) \times p(H_2)^2} \checkmark \checkmark$ | [4] | | | (ii)
(iii) | 1 mark for K _c / use of any []/inverted/power missing. K _p stays the same ✓ Equilibrium position moves to the right/yield increases ✓ in response to increase in reactants ✓ | [2] | | | (iv) | $K_p = \frac{0.261}{3.70 \times 5.10^2} = 2.71 \times 10^{-3} \checkmark \text{MPa}^{-2} \checkmark$ calc value 2.7120546×10^{-3} ; answer and/or units ecf from (ii) | [3] | | | (c) | CH ₃ OH + 1.5O ₂ → CO ₂ + 2H ₂ O ✓ | [1] | | | | | Total: 18 | | | Abbreviations annotations a conventions used in the M Scheme | nd | / = alternative and acceptable answers for the same marking separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | |--|------|--|-----------| | Question | | Expected Answers | Marks | | 3 (a) | (i) | completely dissociates/ionised ✓
proton donor ✓ | [2] | | • | (ii) | NO₃⁻✓ | [1] | | (b) | (i) | pH = -log[H ⁺] / -log(0.015) ✓ = 1.82 / 1.8 ✓ (Not 2) | [2] | | | (ii) | [H'] = 0.0075 mol dm ⁻³
pH = $-\log(0.0075)$ = 2.12 / 2.1 \checkmark | [1] | | (c) | (i) | $K_w = [H^*(aq)][OH^*(aq)] \checkmark state symbols not needed$ | [1] | | | (ii) | $[H^{+}(aq)] = 10^{-pH} = 10^{-13.54} = 2.88/2.9 \times 10^{-14} \text{ mol dm}^{-3} \checkmark$
$[NaOH] / [OH^{-}(aq)] = \frac{K_{w}}{[H^{+}(aq)]} = \frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}$
$= 0.347 / 0.35 \text{ mol dm}^{-3} \checkmark$ | [2] | | (d) | (i) | a solution that minimises/resists/opposes pH changes 🗸 | [1] | | | (ii) | The buffer must contain both CH3COOH and CH3COONa / CH3COO / weak acid and conjugate base ✓ | | | | | Solution A is a mixture of CH₃COOH and CH₃COONa / / has an excess of acid /is acidic ✓ | | | | | Solution B, contains only CH3COONa/ only CH3COO only the salt/ is neutral \checkmark | | | | | CH ₃ COOH(aq) + NaOH(aq)> CH ₃ COONa(aq) + H ₂ O(l) / acid/alkali has been neutralised/
CH ₃ COOH(aq) and NaOH react together ✓ | [4] | | (e) | | [H ⁺] increases ✓ H ₂ O ionises more / for H ₂ O = H ⁺ + OH ⁻ , equilibrium moves to the right ✓ exo/endo is 'noise' | [2] | | | | exozerido is noise | Total: 15 | | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit error carried forward AW = alternative wording ora = or reverse argument | | |--|--|-----------| | Question
4 (a) | Expected Answers | Marks | | 4 (a) | moles of $Cu = 0.68 \times 5/1000 = 0.0034 \checkmark$
mass of $Cu = 0.0034 \times 63.5 = 0.216 g \checkmark$
% $Cu = 0.216/0.28 = 77\% \checkmark$ | [3] | | | ratios: Cu = 26.29/63.5 = 0.41 N= 11.6/14 = 0.83 O = 59.63/16 = 3.73 H= 2.48/1 = 2.48 Comprised forwards (1.1.5) | | | | empirical formula = $CuN_2O_9H_6 \checkmark$ Formula with $3H_2O$ shown separately scores 1: i.e. $CuN_2O_6.3H_2O \checkmark$ Correct formula shown with $(NO_3)_2$ scores 2nd mark: | [2] | | (6) | (Correct answer automatically scores both marks) | [2] | | (b) | Cu \longrightarrow Cu ²⁺ : Cu from 0 to +2 \checkmark
NO ₃ ⁻ \longrightarrow NO: N from +5 to +2 \checkmark
3Cu + 8H ⁺ + 2NO ₃ ⁻ \longrightarrow 3Cu ²⁺ + 2NO + 4H ₂ O \checkmark
'simple balance' as the only creditworthy response scores 1 mark:
i.e. Cu + 4H ⁺ + NO ₃ ⁻ \longrightarrow Cu ²⁺ + NO + 2H ₂ O | [3] | | | moles of $A = 90/24000 = 3.75 \times 10^{-3} \checkmark$ M_r of $A = 0.24/3.75 \times 10^{-3} = 64 \checkmark$ Gas is $5O_2 \checkmark$ $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + 5O_2 + 2H_2O /$ $Cu + 4H^* + SO_4^2 \longrightarrow Cu^{2^*} + 5O_2 + 2H_2O /$ $Cu + 3H^* + HSO_4^- \longrightarrow Cu^{2^*} + 5O_2 + 2H_2O \checkmark$ | [4] | | | | Total: 14 |