Mark Scheme 2815/06 **June 2005**

TRANSITION ELEMENTS

Downloaded from http://www.thepaperbank.co.uk

2815/06

Mark Scheme

June 2005

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
1 (a)	Emf of a cell / voltage / potential difference / cell potential Comprising half cell combined with standard hydrogen electrode Conc = 1 mol.dm ⁻³ ; Pressure (of H ₂) = 1 atm; Temp = 298K (all of above=1mark)	1 1 1
(b)	+0.16 V (unit required)	1
(c) (i)	2MnO ₄ ⁻ + 10Cl ⁻ + 16H ⁺ → 2Mn ²⁺ + 5Cl ₂ +8H ₂ O correct species on both sides of equation equation balanced (ignore electrons for first mark, penalise for balance)	1
(ii)	Chlorine -1 → 0 Manganese +7 → +2 Link to c(i) and allow ecf	1
(iii)	Chloride ion oxidised (not chlorine) Manganate(VII) ion reduced (not manganese)	1
(d)	0.16 V too small/rate too slow/insufficient activation energy/not standard conditions	1
(e)	Peak between 500-550 nm	1
		Total: 12

Question	Expected Answers	Marks
2 (a) (i)	Zinc	1
(ii)	Coins + resist corrosion (not rusting) / hard wearing Or statues + resist corrosion/ attractive patina Or electrical connections + good conductor Or musical instruments + attractive / sonorous Or plumbing fixtures + hard / corrosion resistant	1
(b) (i)	Sodium carbonate/sodium hydroxide/other suitable named alkali (accept correct formulae) Do not accept 'alkali' on its own	1
(ii)	Starch	1
(iii)	Just before the end point/when solution turns pale straw	1
(c) (i)	0.002 mol	1
(ii)	One (1)	1
(iii)	0.002 mol	1
(iv)	0.002 mols Cu ²⁺ contains 0.002 x 63.5 g of Cu =0.127 g 250 cm ³ of solution contains 10 x 0.127 g = 1.27 g % Cu = 1.27/1.65 x 100 = 77.0% (Allow 76.9-77.0; allow ecf)	1 1 1 Total: 11

Downloaded from http://www.thepaperbank.co.uk

2815/06

Mark Scheme

June 2005

Question	Expected Answers	Marks
3 (a)	Number of coordinate / dative covalent bonds attached to metal ion / number of lone pairs accepted (not number of ligands)	1
(b) (i)	[Co(H ₂ O) ₆] ²⁺ is octahedral; [CoCl ₄] ²⁻ is tetrahedral Drawings must be 3 dimensional	2
	(See additional sheet for acceptable 3-d diagrams)	
(ii)	Pink → blue	2
(iii)	Add water. (Allow other suitable suggestions, e.g. add lead nitrate to precipitate Cl ⁻ as PbCl ₂)	1
(c)	[Co(NH₃) ₆] ²⁺ E ^e for forward reaction is least positive Reverse reaction (oxidation) more likely to occur	1 1 1
(d)	Ammonia is a stronger ligand than water / ammonia forms stronger bonds / ammonia is a stronger base / ammonia can donate its lone pair more easily	1
		Total: 10

2815/06 Transition Elements June 2005 - Additional Sheet.

Question 3

(b) (i) Acceptable shapes for $[Co(H_2O)_6]^{2+}$ include:

Acceptable shapes for [CoCl₄]²⁻ include:

Question 4

(b) Any examples which show the principle of cis/trans isomerism and optical isomerism are fine but, all diagrams must be 3-d. The shapes, shown in Q3 are allowed for octahedral or tetrahedral. For square planar complexes used to illustrate cis/trans isomerism the following illustrations are fine. For optical isomerism, there must be a mirror line and the isomers must be non-superimposable object/mirror images.

Downloaded from http://www.thepaperbank.co.uk

2815/06

Mark Scheme

June 2005

Question	Expected Answers	Marks
4 (a) (i)	<u>Cis</u> platin	1
(ii)	Binds to DNA Prevents cell from replicating / cells die	1
(b)	(Cis/trans) + Examples (must be 3-d drawings) Correctly labelled as cis and trans (allow this mark if	2
	diagrams are planar) Cis has same atoms at 90° + Trans has same atoms at	1
	180 ⁰ (need reference to bond angles for mark) (Optical) + examples (must be 3-d drawings) Rotate plane polarised light (by same number of	2
	degrees) in opposite directions Non-superimposable mirror images	1
	NB If use H ₃ N CH ₂ CH ₂ NH ₃ penalise only once (see additional sheet for acceptable 3-d diagrams)	
	QWC – to be awarded for the correct use of scientific terms, to include at least 3 of the following: Cis & trans, optical, plane, polarised, non-	
	superimposable, mirror images, geometric, bidentate, ligand, octahedral, square planar, tetrahedral	1
		Total: 12