

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

CHEMISTRY

2813/01

How Far, How Fast?

Wednesday

8 JUNE 2005

Morning

45 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	10	
2	15	
3	11	
4	9	-
TOTAL	45	-

Answer all the questions.

- 1 This question is about hydrazine, N₂H₄, and ammonia, NH₃. These are both compounds of nitrogen and hydrogen.
 - (a) Hydrazine can be oxidised and used as a rocket fuel. The equation for one possible reaction taking place is shown below.

Some average bond enthalpies are given below.

bond	bond enthalpy / kJ mol ⁻¹
N-N	+163
N≡N	+945
N-H	+390
O=O	+497
0-Н	+463

Table 1.1

(i) Use these data to calculate the enthalpy change for the reaction of hydrazine with oxygen, as shown.

answer kJ mol⁻¹ [4]

(ii) Calculate the enthalpy change for one gram of hydrazine in this reaction.

answer kJ [1]

For Examiner's Use

(b) Ammonia reacts with oxygen in a very similar way to that shown for hydra enthalpy change for one gram of ammonia is approximately the same as th gram of hydrazine.		monia reacts with oxygen in a very similar way to that shown for hydrazine. The halpy change for one gram of ammonia is approximately the same as that for one m of hydrazine.
	Usi is n	ng Table 1.1 , suggest a reason why hydrazine is used as a rocket fuel and ammonia ot.
		[1]
(c)		monia reacts with sulphuric acid, as shown in the equation below.
		$2NH_3(g) + H_2SO_4(aq) \rightarrow (NH_4)_2SO_4(aq)$
	(i)	Complete the statement below to describe how ammonia is behaving in this reaction.
		Ammonia is behaving as a because
		[2]
	(ii)	State one important use for the compound $(NH_4)_2SO_4$.
((iii)	Apart from the manufacture of $(NH_4)_2SO_4$, state one other large-scale use of ammonia.
		[1]
		[Total: 10]

[Turn over

For
Examiner's
Lico

inis	s que	estion is concerned with equilibria that exist between oxides of hitrogen.
(a)	Stat	te le Chatelier's principle.
		[2]
(b)		rogen dioxide, NO_2 , is a brown gas whilst dinitrogen tetroxide, N_2O_4 , is a colourless . The following equilibrium between these two gases was set up.
		$2NO_2(g) \rightleftharpoons N_2O_4(g)$ $\Delta H = -58 \text{ kJ mol}^{-1}$
		scribe, and explain, what you would see after the following changes have been made I the system allowed to reach equilibrium again.
	(i)	The temperature is increased.
		[3]
	(ii)	The pressure is increased.
		[3]

For Examiner's Use

(c)	NO	2 is an atmospheric pollutant that reacts with water according to the equation below.
		$2NO_2(g) + H_2O(I) \rightarrow HNO_3(aq) + HNO_2(aq)$ equation 2.1
	(i)	Use oxidation numbers of nitrogen to explain why equation 2.1 represents a redox reaction.
		[2]
	(ii)	State a likely source of NO ₂ as an atmospheric pollutant.
		[1]
(d)	The conf	reaction of NO_2 with water, in equation 2.1, occurs when rain falls through air taining NO_2 .
	Both	n HNO ₃ and HNO ₂ are acids.
	Lim	estone contains calcium carbonate, CaCO ₃ .
	(i)	Which ion is responsible for the acid properties of HNO ₃ and HNO ₂ ?
		[1]
	(ii)	Write the ionic equation for the reaction between calcium carbonate and HNO ₃ .
		[2]
(iii)	Norwich cathedral is built from limestone. What will happen to Norwich cathedral over a period of years if significant amounts of NO ₂ are present in the atmosphere around Norwich?
		[1]
		[Total: 15]

6

For Examiner's Use

3 In an experiment to determine the standard enthalpy change of combustion of propan-1-ol, C₃H₇OH, a student used the apparatus shown below.

(a)	Define the term enthalpy change of combustion.		
	[2]		
(b)	Write the equation for the standard enthalpy change of combustion of propan-1-ol, $\mathrm{C_3H_7OH}$.		
	[2]		

For Examiner's Use

(c)	tem	e student measured 50.0 cm ³ of water into the beaker and lit the burner. When the perature of the water had gone up by 12.8 °C, he found that 0.100 g of propan-1-ol been burnt.
	(i)	Calculate the energy, in kJ, produced by burning 0.100 g of propan-1-ol. The specific heat capacity of water is $4.18Jg^{-1}K^{-1}$.
	(ii)	energy = kJ [2] Calculate the number of moles of propan-1-ol in 0.100 g.
	(iii)	number of moles =
		enthalpy changekJ mol ⁻¹ [1]
(d)	entr	student looked in a text book and found that the actual value for the standard alpy change of combustion of propan-1-ol was more exothermic than the erimental value.
	Sug _e	gest two reasons for the difference between this value and the one he obtained rimentally.
	1	
	•••••	
	•••••	[2]
		[Total: 11]

8	
•	

For Examiner : Use

(a)	What is a catalyst?
	[2]
(b)	Explain the terms heterogeneous catalyst and homogeneous catalyst. In your explanation you should
	include an example of a reaction for each type of catalyst
	include an equation for one of your reactions
	describe how a heterogeneous catalyst works.

	[7]
	[Total: 9]

END OF QUESTION PAPER