Mark Scheme 2812 June 2005

CHAINS + RINGS

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2812 June 2005 1. C₆H₁₄ (a) boiling point increases with increase in M_R/molecular formula/N° of carbon (b) (i) atoms/chain length more intermolecular forces/electrons/surface area/ (ii) surface interactions/van der Waal forces 120 -130 °C (iii) $C_9H_{20} \longrightarrow C_7H_{16} + C_2H_4$ (c)(i)(ii) $C_2H_4 + H_2O \longrightarrow C_2H_5OH$ temperature > 100 °C/ steam phosphoric acid (catalyst)

(ii) 85 –98 °C

(e) $C_{7}H_{16} \longrightarrow C_{6}H_{11}CH_{3}/ \longrightarrow H_{2}$ $H_{2} \text{ as a product}$ $C_{7}H_{16} \longrightarrow C_{7}H_{14} + H_{2}$ either of these scores 1 mark

(f) more efficient fuel/better fuel/ higher octane number/reduces knocking/more volatile/lower boiling points/burn better/burn more easily/quicker

[Total: 13]

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme for Unit 2812/01, June 2005 - ERRATUM

See page 9 of the main booklet.

As part of the printing process, two boxes have become corrupted, these should be as shown below.

- 2. (a)
- a) (i) reaction 1

✓

(ii) reaction 4

1

(iii) reaction 3

_

(b)

- (i)
- lone pair/electron pair donor

Correct dipole

- Curly arrow from the O in the OH to C in the CH2
- ,
- Curly arrow to show movement of bonded pair in the C-CI bond
- Cl as a product

- (c) (i) same molecular formula , different structure/arrangement of atoms. (same formula , different structure.✓)
- ✓ ✓

(ii)

- (d)
- (i) addition, (not additional)

- ✓
- (ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene
- (iii)

[Total: 15]

Downloaded from http://www.thepaperbank.co.uk

2812 Mark Scheme June 2005

3. (a)

(i)

prop-2-en-1-ol CH₂=CHCH₂OH must show the C=C double bond

acrolein

must clearly show the aldehyde group and the C=C

- (ii) alkene/C=C double bond
- (b) (i) acidified /H⁺
 - dichromate/Cr₂O₇²⁻
 - (ii) $CH_2CHCH_2OH/C_3H_6O/C_3H_5OH + [O] \longrightarrow CH_2CHCHO/C_3H_4O/C_2H_3CHO + H_2O$ not CH_2CHCOH
- (c) acrylic acid

 approx 1700 cm⁻¹ (range 1650 1750) indicates C=O

 approx 3000 cm⁻¹ (range 2500- 3300) indicates O-H

 not 3230 3550 cm⁻¹
- (d) (i) CH₂CHCH₂OOCCHCH₂ /(C₆H₈O₂) ✓
 H₂O
 - (ii) $H_2C = CH C O CH_2 CH = CH_2$

or

1 mark if the ester group, 1 mark for the rest of the molecule. COO/CO₂ without displaying the ester, they can still get 1 mark.

[Total: 13]

Downloaded from http://www.thepaperbank.co.uk June 2005

- (a)
- (i) decolourises/not clear/not discolours

(ii)
$$H_3C - \stackrel{\leftarrow}{C}H_2$$
 $H_3C - \stackrel{\leftarrow}{C}H - CH_2Br$ or $H_3C - CHBr - CH_2Br$ $H_3C - CHBr - \stackrel{\leftarrow}{C}H_2$ to $C+$

curly arrow from C=C to Br^{δ+}

dipole on Br-Br **and** curly arrow showing movement of bonded pair of electrons ✓ correct intermediate/carbonium ion/carbocation **and** curly arrow from Br to C+ ✓ 1,2-dibromopropane as product

(b) CH₃CBr₂CH₃

CH₃CHBrCH₂Br

CH₃CH₂CHBr₂

(CH₃CHBrCH₂Br has a chiral centre, hence optical isomers of 1,2-dibromopropane are acceptable but must be drawn with 'wedge-shape' bonds and be non-superimposable mirror images)

[Total: 8]

2812 5	Downloaded	from http://www.thepaperbank.co.u Mark Scheme	IK June 2005
(a)	Essential marks:		
	<u>Order</u>	RI>RBr>RCI /owtte	. 🗸
	reason for the orde	er C-I bond weakest/length/C-Ci bond strongest and mention/intermolc forces loses the mark	✓
	an equation	Ag ⁺ + X ⁻ → AgX (solid or ppt) or an equal hydrolysis/using OH ⁻ or H ₂ O	tion for ✓
			max = 3
Two possibl	le methods of monito	ring the reaction	
Meth	od 1	Method 2	
AgNo	O_3	AgNO ₃	✓
	nol & Waterbath/ oxide	NaOH/OH ⁻	✓
temp	40 – 80 °C eat/not bunsen	& neutralise with HNO ₃	
	ve <u>rate</u> of pitation	relative <u>amount</u> of precipitation	✓

(b) Properties:

Non-toxic/harmless ✓
non-flammable ✓

any two from: ✓ ✓

(propellant in) aerosols because it is volatile/ unreactive/ non-toxic/easily compressed

blowing polystyrene because it is unreactive

dry cleaning because it is a good solvent for organic material

degreasing agent because it is a good solvent for organic material

fire extinguishers because it is non-flammable

QWC

reasonable spelling, punctuation and grammar throughout ✓ [Total: 11]