Mark Scheme 2811 June 2005

FOUND ATT ON CHEMISTRY

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
1 (a) (i) (ii)	atoms of same element/same atomic number with different numbers of neutrons/different masses ✓ isotope protons neutrons electrons 46Ti 22 24 22 ✓ 47Ti 22 25 22 ✓	[1]
(b)	$A_{r} = \frac{(46 \times 8.9) + (47 \times 9.8) + (48 \times 81.3)}{100} / 47.724 \checkmark$ $= 47.7 \checkmark$	[2]
(c)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ² ✓	[1]
(d) (i)	⊕ - ⊕ - ⊕ ⊕ - ⊕ - ⊕ ⊕ - ⊕ - ⊕ positive ions ✓ electrons ✓ (must be labelled)	
		[2]
(ii)	electrons move ✓	[1]
(e) (i)	moles Ti = 1.44/47.9 = 0.0301 mol/0.03 mol (accept use of answer from (b))	[1]
(ii)	mass of Cl = 5.70-1.44 = 4.26 g ✓ moles Cl = 4.26/35.5 = 0.120 mol ✓ 5.70/35.5 = 0.161 mol gets 1 mark	[2]
(iii	Ti:CI = 0.0301 : 0.12 = 1:4. Empirical formula = TiCl₄ ✓ 0.0301 : 0.161 mol gives TiCl₅ for 1 mark	[1]
(iv	Ti + 2Cl₂ → TiCl₄ ✓ (ecf possible from (iii) covalent ✓	[1]
(v)		[2] Total: 16

Downloaded from http://www.thepaperbank.co.uk

Abbreviations, annotations and conventions used in the Mark Scheme		and	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Que	stion	<u></u> -	Expected Answers	Marks
2	(a)		RaCl₂ ✓	[1]
	(b)		Reduction is gain of electrons/decrease in oxidation number	[2]
	(c)	(i)	effervescence/bubbles ✓ Ra disappears/dissolves ✓	[2]
		(ii)	8-14 ✓	[1]
	(d)	(i)	First ✓ ionisation (energy) ✓ Ra(g) → Ra ⁺ (g) + e ⁻ ✓ ✓ 1 mark for equation 1 mark for state symbols '-' not required on 'e' atomic radii of Ra > atomic radii of Ca/ Ra has electrons in shell further from nucleus than Ca/ Ra has more shells ✓ Ra has more shielding than Ca ✓ :'more' is essential Ra electron held less tightly/less attraction on electron ✓	[2]
				[3]
				Totai: 13

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
3 (a)	Mg(OH) ₂ (s) + 2HCl(aq) \rightarrow MgCl ₂ (aq) + 2H ₂ O(l)	[1]
(b) (i) (ii)	moles HCl = 0.108 x 500/1000 = 0.054 ✓ moles Mg(OH) ₂ = ½ x moles HCl = 0.027 ✓ molar mass of Mg(OH) ₂ = 24.3 + 17x2 = 58.3 ✓ (do not penalise 24)	[1]
	mass $Mg(OH)_2 = 58.3 \times 0.027 = 1.57 \text{ g} / 1.5741 \text{ g} \checkmark$ (accept ans from (ii) x 0.027 = 1.566 g) (mass $Mg(OH)_2$ of 3.15 g would score 2 marks as 'ecf' as molar ratio has not been identified)	[3]
(iii)	Too much if 2.42 g (dose) > ans to (ii) ✓ (If answer to (ii) > 2.42 g then 'correct' response here would be 'Not enough'	[1]
(c)	CaCO₃ reacts with (or neutralises) HCl ✓ (or CaCO₃ + HCl in an equation)	
	CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂ ✓ (correct equation would score both marks)	[2]
		Total: 8

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
4 (a)	Cl₂(g) → NaOCl(aq): Cl(0) → Cl(+1) ✓ Cl₂(g) → NaCl(aq): Cl(0) → Cl(-1) ✓ Cl is both oxidised (in forming NaOCl) and reduced (in forming NaCl)/disproportionation Cl reduces Cl to form NaCl AND Cl oxidises Cl in forming NaOCl ✓	[3]
(b) (i)	Cl ₂ + 2l ⁻ → l ₂ + 2Cl ⁻ ✓ ✓ 1 mark for species. 1 mark for balancing	[2]
(ii)	Cl atom is smaller/has less shells ✓ electron to be captured will be attracted more ✓	[2]
		Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking p; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	to my is
Question	Expected Answers	Marks
5 (a) (i)	H bonding from O of 1 H₂O molecule to H of another ✓ dipoles shown ✓ with lone pair involved in bond ✓	[3]
(ii)	Two properties from: Ice is lighter than water/ max density at 4°C ✓ explanation: H bonds hold H₂O molecules apart / open lattice in ice / H-bonds are longer ✓	
	Higher melting/boiling point than expected ✓ explanation: strength of H bonds that need to be broken ✓ must imply that intermolecular bonds are broken High surface tension/viscosity ✓ explanation strength of H bonds across surface ✓	
		[4]
(b)	NH₃: 107° ✓ (range 106 – 108°) electron pairs repel other electron pairs ✓ lone pair has more repulsion ✓ electron pairs get as far apart as possible ✓	[4]
(c)	N has less protons than O (ora) ✓ electrons are in same shell /have same or similar shielding ✓ weaker nuclear attraction in N (ora) ✓ shell drawn in less by nuclear charge in N (ora) ✓ watch for distinction between nuclear attraction and nuclear charge in candidates' scripts.	[4]
	QoWC: links together two statements in at least two of the sections (a)(ii), (b) and (c)	[1]
		Total: 16