Mark Scheme 2815/01 June 2005

TROUDS + PATTERNS

Mark	Unit Code	Session	Year		Version			
Scheme	2815/01	June	2005		Final Post-			
Page 1 of 6	Standardisation							
Abbreviations,	/ = alternative and acceptable answers for the same marking point							
annotations	; = separates marking points							
and	NOT = answers which are not worthy of credit							
conventions	() = words wh	nich are not essentia	to gain credit					
used in the	= (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward							
Mark Scheme	AW = alternativ							
	ora = or reverse argument							
Question		Expected answe	ers	Marks	Additional guidance			
1 (a)	Correct electronic	structures magnes	sium either 8	3				
	electrons in outer	shell or none and I	both chloride ions	Ū				
	with 8 electrons in	with 8 electrons in the outer shell (1);						
	Correct charge on the ions, Mg ²⁺ and Cl ⁻ (1);							
	Correct 'dot-and-o							
/L)			airs for chlorine (1)	6				
(b)	MgC/ ₂ dissolves / dissociates / ionises / forms a colourless solution / equation showing dissociation (1);				Not MgCl ₂ fizzes			
	With a pH of (alm		or forms a white					
	with a pri of (aimi		ppt					
				Allow for MgCl ₂				
					any pH between 6 and 7			
	SiC/4 is hydrolyse		Ignore state					
	to give a white pre		symbols in the					
	misty fumes (1); and a pH of 3 or below (1);				equation			
					Allow Si(OH) ₂ Cl ₂			
	SiC/ ₄ + 2H ₂ O →		or Si(OH)₄ in the					
					equation			
(c)	MgCI ₂ is giant ion	c and SiCl ₄ is a sir	nple molecule (1)	3				
	MgC/2 - (Electros	tatic) attraction bet						
	SiC/ intermoles	n (positive and neg						
	attraction (1);	ulai attraction / var	der Waals forces of					
		in MgCl ₂ is stron	mor than in SiCL /		The comments and			
	ora (1)	i iii mgon is suon i		The comparison				
					of the strengths of forces/bonding			
				, 	must refer to the			
					correct type of			
					bonding e.g.			
				ŀ	strong ionic			
					bonding and weak			
					van der Waals			
					(1)			
				}	Not ionic bonds			
					are stronger than			
	<u> </u>			L	covalent bonds			

Downloaded from http://www.thepaperbank.co.uk

2815/01

Mark Scheme

June 2005

Mark Scheme Page 2 of 6 Abbreviations, annotations	2 of 6				Version Final Post- Standardisation arking point		
and conventions used in the Mark Scheme	NOT = answers () = words with a contract of the contract of t	 = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit = error carried forward = alternative wording 					
Question	Expected answers				Additional guidance		
1 (d) (i) (ii)	Al ₂ Cl ₆ (1) 2Al + 3Cl ₂ → A	l ₂ Cl ₆ (1)		1	Allow any correct multiple of equation Allow ecf from wrong formula in (i)		
(iii)	(Solid aluminium chloride is covalent but) in solution has ions that can move / (solid aluminium chloride has no ions but) in solution ions can move (1)			1	Not ions cannot move in solid Not reference to ionic solid		
(e)	PCl ₆ (1)			1 Total = 16			

Mark Schem Page 3		Unit Code 2815/01	Session June	Year 2005	Version Final Post- Standardisation		
Abbreviannotati and conveniused in Mark Sc	iations, ions tions the	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument					
		Expected answers			Additional guidance		
2 (a) (i)	CaCO₃ → CaC			1	Ignore state symbols	
	(ii)	Ca ²⁺ has a smaller So calcium ion pother barium ion / so / ora (1)	r ionic radius than B larises the carbonat o Ca ²⁺ distorts the C	e (ion) more than O ₃ ²⁻ more than Ba ²⁺	2	Particles referred to must be correct Not Ca has a higher charge density Not calcium has a higher charge density Allow calcium has a smaller ionic radius Allow correct description of more polarisation Allow CO ₃ -Not Ca ²⁺ polarises CO ₃	
(t	o) (i)	Oxidation state of	nitrogen goes from oxygen goes from -	2 to 0 (1);	3	If oxidation state of barium given is incorrect max 1 for the oxidation numbers.	
		reduction and with		n state with		Allow ecf from wrong oxidation states for the correct linking mark Both oxidation and reduction needed	
	(ii)	Correct use of mo Correct cycle (1); (+)1000 (kJ mol ⁻¹)			3	Award full marks for (+) 1000 (kJ mol ⁻¹) Only allow ecf for final lattice energy answer from a correct cycle Allow -1000 (1), 467 (2), +901 (2), +1558 (2),	

Downloaded from http://www.thepaperbank.co.uk

2815/01

Mark Scheme

June 2005

Mark	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Version
Scheme	2815/01 June 2005			Final Post-	
Page 4 of 6	Standardisation				
Abbreviations, annotations and conventions used in the Mark Scheme Abbreviations, annotations and conventions used in the Mark Scheme Mark Scheme Mark Scheme Abbreviations = alternative and acceptable answers for the same marking points = separates = separates = separates = separates = separates = separates = sep					
Question	n Expected answers Marks Additional			Additional guidance	
2 (c) (i)	Moles of Ba(NO ₃) ₂ = 0.005 or 0.00502 (1); Moles of gas made = 0.0125 / 0.0126 (1); Volume of gas = 300 cm^3 to 302 cm^3 (1)			3	Allow ecf within question Ignore significant figures
(ii)	Decomposition temperature may be too high / too much gas will be produced / to fill a gas syringe need a smaller amount of solid / gas syringe too small (1)			1	Allow NO ₂ is toxic / barium compounds are toxic Answer is consequential on answer to (i)
(d) (i)	released when on is made from its g		;	2	Not energy required Allow marks via an equation Allow ionic compound / crystals instead of solid
(ii)	radius / ora (1);		ensity / smaller (ionic) e oxide (ion) / ora (1)	2	Allow calcium oxide has stronger ionic bond / ora
				Total = 17	

= separate = answers = words wh = (underlin) = error car = alternatin = or revers nsition element 1 s ² 2s ² 2p ⁶ 3s nsition element mplete set of d 3d orbital (1	es marking points which are not worthy hich are not essential hing) key words which ried forward ve wording se argument Expected answe ent 23p63d9 (1); nts have one oxidat 3d electrons / have	to gain credit must be used to gain o	king point	Additional guidance
= separate = answers = words wh = (underlin) = error car = alternatin = or revers nsition element 1 s ² 2s ² 2p ⁶ 3s nsition element mplete set of d 3d orbital (1	es marking points which are not worthy hich are not essential hing) key words which ried forward ve wording se argument Expected answe ent 23p63d9 (1); nts have one oxidat 3d electrons / have	of credit to gain credit must be used to gain o	Marks	
nsition element 1s ² 2s ² 2p ⁶ 3s nsition element omplete set of d 3d orbital (1	ent ² 3p ⁶ 3d ⁹ (1); nts have one oxidat 3d electrons / have			
† 1s ² 2s ² 2p ⁶ 3s nsition elemer omplete set of d 3d orbital (1 mplex ion	² 3p ⁶ 3d ⁹ (1); nts have one oxidat [:] 3d electrons / have	ion state that has an	11	34.44
Cl₄ ²⁻ (1); gram of the co ensions e.g. t rrect bond and	pper complex ion e opper complex show use of wedges or do	wing three		Allow has at least one half-filled d orbital / partially filled 3d sub-shell If a copper complex that does not exist is used then first three marks not available If a correct iron complex is given then example mark cannot be awarded Allow square planar where appropriate
pper(II) ion is	ctron pair donor (1) an electron pair ac sts between ligand a			Electron pair donor, electron pair acceptor and dative bond marks can awarded from an appropriate diagram
	+3 (1); compounds e.g. co	opper(II) chloride is		Ignore copper has a +3 Ignore iron has a +6 oxidation state
	operties everal oxidation on has +2 and orms coloured een or iron(II)	operties everal oxidation states e.g. coppe en has +2 and +3 (1); erms coloured compounds e.g. co een or iron(II) sulphate is pale gre	operties everal oxidation states e.g. copper has +1 and +2 or	operties everal oxidation states e.g. copper has +1 and +2 or in has +2 and +3 (1); orms coloured compounds e.g. copper(II) chloride is een or iron(II) sulphate is pale green (1);

Downloaded from http://www.thepaperbank.co.uk

2815/01

Mark Scheme

June 2005

Mark Scheme Page 6 of 6 Abbreviations, annotations and conventions used in the Mark Scheme	; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward				
Question	Expected answers			Marks	Additional guidance
3	Use of technical to	e bond I Innar I (state)	Total	Put a ring around the technical terms	
				= 12	