How FAR, How FAST? Mark Scheme 2813/01 January 2005 Downloaded from http://www.thepaperbank.co.uk 2813/01 Mark Scheme January 2005 1(a) any two from produces heat/ exothermic/ produces high temperature (1) has low toxicity (1) is easily ignited/ easily flammable/ burns easily (1) [2] reaction carried out at 298K and 1 atm pressure (or other relevant (b)(i) units) (1) [1] (ii) enthalpy change when 1 mole (1) (of substance) is burnt in excess oxygen (1) [2] 4CO₂ + 5H₂O at lower energy than reagents (1) (iii) E_a marked correctly (1) ΔH marked correctly (1) [3] (c)(i) $4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$ reagents and products (1) state symbols (1) [2] (ii) X 5H₂ → C₄H₁₀ 4C 4(-394) 5(-286) -28774CO₂ 5H₂O cycle (1) correct values (1) answer (1) X - 2877 = 4(-394) + 5(-286) $X = -129 (kJ mol^{-1})$ [3] [Total: 13] | 2(a) | if the conditions on a system in equilibrium are changed (1) | | |--------|--|------------| | | the equilibrium moves to try to minimise the effects of the change (| 1)
[2] | | (b)(i) | time less (1) | | | | E _a lowered (1) | [2] | | (ii) | time less (1) | | | | more collisions/ particles exceed E _a (1) | [2] | | (iii) | time more (1) | | | | particles are further apart and therefore less (frequent) collisions | (1)
[2] | | (c)(i) | no effect because it only increases rate of reaction (1) | [1] | | (ii) | moves to LHS/ more N ₂ and H ₂ / less NH ₃ (1) | | | | forward reaction is exothermic (1) | [2] | | (iii) | moves to LHS / more N ₂ and H ₂ / less NH ₃ (1) | | | | fewer moles on RHS (1) | [2] | | (d) | temperature is compromise - high gives better rate but lower yield | (1) | | | danger/costs of higher pressure not justified by increased rate/ by increased yield / 200 atm gives a high rate and a high yield (1) | [2] | | | [Total: | 15] | ## Downloaded from http://www.thepaperbank.co.uk 2813/01 Mark Scheme January 2005 3(a) acids are proton/ H⁺ donors (1) a strong acid is completely dissociated but a weak acid is partly dissociated (1) $$HCI \rightarrow H^{+} + CI^{-}(1)$$ $$CH_3COOH \rightleftharpoons CH_3COO^- + H^+ (1)$$ [4] (b)(i) hydrogen/ H_2 (1) [1] (ii) marks are for reason (to produce hydrogen at the same rate), each acid must have the same concentration of $H^{+}(1)$ the ethanoic acid was more **concentrated** (1) [2] [Total: 7] ## Downloaded from http://www.thepaperbank.co.uk | 2813/01 | Mark Scheme | January 2005 | |---------|--|--------------| | 4(a)(i) | $C_8H_{18} + 121/2O_2 \rightarrow 8CO_2 + 9H_2O$ | | | | reagents and products (1) | | | | balancing (1) | [2] | | (ii) | from nitrogen in air and oxygen (1) | [1] | | (b)(i) | any two from Pt/ Rh/ Pd | [1] | | (ii) | adsorbed (1) | | | | bonds within molecule weakened (1) | | | | desorbed/ description (1) | [3] | | (iii) | $CO + NO \rightarrow 1/2N_2 + CO_2$ | | | | reagents and products (1) | | | | balancing (1) | [2] | | (c) | ozone/ NO ₂ / nitric acid (1) | [1] | | | | [Total: 10] |