

How FAR, How FAST?

Mark Scheme 2813/01

January 2005

Downloaded from http://www.thepaperbank.co.uk

2813/01 Mark Scheme January 2005 1(a) any two from produces heat/ exothermic/ produces high temperature (1) has low toxicity (1) is easily ignited/ easily flammable/ burns easily (1) [2] reaction carried out at 298K and 1 atm pressure (or other relevant (b)(i) units) (1) [1] (ii) enthalpy change when 1 mole (1) (of substance) is burnt in excess oxygen (1) [2] 4CO₂ + 5H₂O at lower energy than reagents (1) (iii) E_a marked correctly (1) ΔH marked correctly (1) [3] (c)(i) $4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$ reagents and products (1) state symbols (1) [2] (ii) X 5H₂ → C₄H₁₀ 4C 4(-394) 5(-286) -28774CO₂ 5H₂O cycle (1) correct values (1) answer (1) X - 2877 = 4(-394) + 5(-286) $X = -129 (kJ mol^{-1})$ [3]

[Total: 13]

2(a)	if the conditions on a system in equilibrium are changed (1)	
	the equilibrium moves to try to minimise the effects of the change (1) [2]
(b)(i)	time less (1)	
	E _a lowered (1)	[2]
(ii)	time less (1)	
	more collisions/ particles exceed E _a (1)	[2]
(iii)	time more (1)	
	particles are further apart and therefore less (frequent) collisions	(1) [2]
(c)(i)	no effect because it only increases rate of reaction (1)	[1]
(ii)	moves to LHS/ more N ₂ and H ₂ / less NH ₃ (1)	
	forward reaction is exothermic (1)	[2]
(iii)	moves to LHS / more N ₂ and H ₂ / less NH ₃ (1)	
	fewer moles on RHS (1)	[2]
(d)	temperature is compromise - high gives better rate but lower yield	(1)
	danger/costs of higher pressure not justified by increased rate/ by increased yield / 200 atm gives a high rate and a high yield (1)	[2]
	[Total:	15]

Downloaded from http://www.thepaperbank.co.uk

2813/01 Mark Scheme January 2005

3(a) acids are proton/ H⁺ donors (1)

a strong acid is completely dissociated but a weak acid is partly dissociated (1)

$$HCI \rightarrow H^{+} + CI^{-}(1)$$

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+ (1)$$
 [4]

(b)(i) hydrogen/ H_2 (1) [1]

(ii) marks are for reason

(to produce hydrogen at the same rate), each acid must have the same concentration of $H^{+}(1)$

the ethanoic acid was more **concentrated** (1) [2]

[Total: 7]

Downloaded from http://www.thepaperbank.co.uk

2813/01	Mark Scheme	January 2005
4(a)(i)	$C_8H_{18} + 121/2O_2 \rightarrow 8CO_2 + 9H_2O$	
	reagents and products (1)	
	balancing (1)	[2]
(ii)	from nitrogen in air and oxygen (1)	[1]
(b)(i)	any two from Pt/ Rh/ Pd	[1]
(ii)	adsorbed (1)	
	bonds within molecule weakened (1)	
	desorbed/ description (1)	[3]
(iii)	$CO + NO \rightarrow 1/2N_2 + CO_2$	
	reagents and products (1)	
	balancing (1)	[2]
(c)	ozone/ NO ₂ / nitric acid (1)	[1]
		[Total: 10]