

CHAINS + RINGS
Mark Scheme 2812
January 2005

2812

Mark Scheme

January 2005

1.

(a) (i) 24.7/12: 2.1/1: 73.2/35.5 2.06: 2.1: 2.06

2.00 . 2.1 . 2.00

✓

CHC1

(ii) (CHC1 = 12 + 1 + 35.5 =) 48.5

 $48.5 \times 3 = 145.5$

TO.J A J ~ 1TJ.

Any two from

(b) (i)

(ii) 1,2,3-trichloropropene (trichloropropene scores 1 mark ✓)

3 marking points:

- correct numbers 1,2,3
- trichloro
- propene/prop-1-ene

any two gets 1 mark

(c) (i)

1 mark if backbone contains 4 carbons with 'endbonds' and a reasonable attempt has been made e.g used the wrong isomer.... max = 1 mark

(ii) non-biodegradable

toxic fumes evolved when burnt

HCl or Cl• or chlorinated organic compounds such as COCl₂ also evolved when burnt

[Total: 13]

2812 Mark Scheme January 2005

2. (a) (i)

CH₃CH₂ CH₂CH₂O'Na⁺ charges are not necessary allow the alkoxide ion

If neither of the above is correct then one mark can be awarded for any of:

2812 Mark Scheme January 2005

(b) (i) decolourises

(ii) $\begin{array}{c} CH_3CH_2 & CH_2CH_2OH \\ H & C & C & H \\ CH_3CH_2 & CH_2CH_2OH \\ OT & Br: \\ CH_3CH_2 & CH_2CH_2OH \\ H & C & C & H \\ Br & Br & Br \\ CH_3CH_2 & CH_2CH_2OH \\ H & C & C & H \\ Br & Br & Br \\ CH_3CH_2 & CH_2CH_2OH \\ H & C & C & H \\ CH_3CH_2 & CH_2CH_2OH \\ H & C & C & H \\ CH_3CH_2 & CH_2CH_2OH \\ H & C & C & H \\ CH_3CH_2 & CH_2CH_2OH \\ H & C & C & H \\ CH_3CH_2 & CH_2CH_2OH \\ H & C & C & C & C \\ CH_3CH_2 & CH_2CH_2OH \\ CH_3CH_2 & CH_2CH_2 & CH_2CH_2OH \\ CH_3CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 \\ CH_3CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 \\ CH_3CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 \\ CH_3CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 \\ CH_3CH_2 & CH_2CH_2$

curly arrow from C=C bond to bromine

dipoles on Br_2 or curly arrow to show movement of bonded pair of electrons

intermediate carbonium ion/carbocation

curly arrow from lone pair on the Br^2 ion to carbonium ion ($Br^{\delta-}$ loses 1 mark)

[Total: 10]

2812 Mark Scheme January 2005 C_4H_{10} (i) 3. (a) $C_4H_{10} + 6\frac{1}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$ (ii)(CO₂ & H₂O as products (iii) propan-2-ol require an attempt at a 3D structure and (b) (i) bond angles must clearly not be 90°. require at least one 'wedge' bond or one 'dotted' bond $108 - 111^{\circ}$ (ii) volatile/low boiling/gas/non-toxic/non-flammable/unreactive/liquefied under (iii) pressure/inert homolytic = bonded pair split equally/ each retains 1 electron (iv) fission = bond breaking C-Cl (no mark) because it is the weaker bond (v) (vi) C1• •CF₃ (allow CF₃•) (lack of 'dots' penalise once)

[Total: 12]

dipoles

2812 Mark Scheme January 2005

4.

(a)
$$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$$
 $(C_2H_5OH \& CO_2 \checkmark)$

hydrogen bond between O in one O-H and H in the other O-H ✓

lone pair from O involved in the H-bond

- (c) (i) (volatile components) can escape/distil out

 ethanal is most volatile/b pt less than 60 °C/partial oxidation

 (ii) (volatile components) connect escape/reflected.
 - (ii) (volatile components) cannot escape/ refluxed

 complete oxidation will be achieved/oxidised to the acid

(d)
$$C_2H_5OH + 2[O] \longrightarrow CH_3COOH + H_2O$$
 $(CH_3COOH + H_2O \checkmark)$

(e) spectrum C

spectrum C only shows absorption at 1700 cm⁻¹ for the C=O

the other two spectra contain the OH group absorption at approx 3000 cm⁻¹

✓

[Total: 14]

2812	Mark Scheme	January 2005
5.		
	identifies the three process as cracking, reforming, isomerisation	✓
	recognises the need for high temperature or a catalyst	✓
	equation for cracking	✓
	equation for isomerisation	✓
	state that reforming converts chains into rings/cyclic compounds	✓
	equation for reforming (balanced with H ₂ could score two marks)	✓
	sub-	-section mark = 6
	oil is finite/non-renewable	✓
	ethanol is renewable/sustainable	✓
	from plants/crops/sugar cane/sugar beet/glucose/sugar/fermentation	n 🗸
	$C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$	✓
	sub	-section mark = 4
	QWC	
•	organise relevant information clearly and coherently, using specialist voca appropriate (minimum of 4 from cracking/ isomerisation/ reforming/ renefinite/fermentation/non-renewable/sustainable/zeolite/bimetallic catayst/	wable/ feedstock/
•	reasonable spelling, punctuation and grammar throughout	✓
		[Total: 11]