Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2816/01

June 2004

Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2816/01

wuc3	tion		Expected Answers	Marks
1	(a)	(i)	rate at start (of reaction)/ t=0 ✓	[1]
		(ii)	0.048 (mol dm ⁻³ s ⁻¹) ✓	[1]
	(b)	(i)	C ₁₂ H ₂₂ O ₁₁ (aq): Exp 2 has twice [C ₁₂ H ₂₂ O ₁₁ (aq)] as Exp 1 and rate x 2 ✓,	
			so order = 1 with respect to C ₁₂ H ₂₂ O ₁₁ ✓	
			HCl(aq): Exp 3 has 1.5 x [HCl] as Exp 1 and rate increases by 1.5 ✓, so order = 1 with respect to HCl(aq) ✓	
			ORDER HAS TO BE CORRECT TO GET REASON MARK	[4]
		(ii)	2/second order ✓	
			This will be dependent on answer to (i)	[1]
		(iii)	rate = k[C ₁₂ H ₂₂ O ₁₁] [HCl] ✓✓ OR	
			rate = 2.4 [C ₁₂ H ₂₂ O ₁₁] [HCI] ✓✓	[2]
			rate = $k [C_{12}H_{22}O_{11}] [H_2O]$ scores 1 mark) rate = $[C_{12}H_{22}O_{11}] [HCI]$ scores 1 mark)	
			k [C ₁₂ H ₂₂ O ₁₁] [HCl] scores 1 mark)	}
			$k = [C_{12}H_{22}O_{11}] [HCI] \text{ scores zero}$	
	(c)		Check for ecf from (i) increases ✓	[1]
	(d)	/i)		1 '
	(u)	(i)	time for concentration (of a reactant) to fall to half the original value ✓	[1]
		(ii)	C ₁₂ H ₂₂ O ₁₁ : 0.05 mol dm ⁻³ ✓	
			In one half life, [C₁₂H₂₂O₁₁], concentration halves 0.1/2 ✓	
			HCl: 0.1 mol dm ⁻³ ✓	
			Assume mol dm ⁻³ unless told otherwise	(3)
			Assume 'mol dm³ means mol dm⁻³ but Penalise wrong unit once only	[3]
			, ortained Wrong with orther offin	Total: 14

Final Mark Scheme

2816/01

Question	Expected Answers	Marks
2 (a) (i)	$K_c = \frac{[NO]^2}{[N_2][O_2]} \checkmark \checkmark$ award 1 mark if upside down K_p expression worth 1 mark	[2]
(ii)	Equil \longrightarrow left because K_c is very small $[O_2(g)] = \frac{[NO]^2}{[N_2] \times K_c} = \frac{(4.0 \times 10^{-16})^2}{1.1 \times 4.8 \times 10^{-31}} \checkmark$	[1]
	= 0.30 mol dm ⁻³ ✓ (calculator: 0.303030303) answer given to 2 sig figs ✓ 3.3 ✓ ✓ (upside down) calc: 3.3 7.6 x 10 ¹⁴ ✓ ✓ (missing out ²) calc: 7.5757 0.37 ✓ ✓ (1.1 on top) calc: 0.366666 5.2 x 10 ⁻⁴⁶ ✓ ✓ ('4' values swapped) calc: 5.236363. x 10 ⁻⁴⁶	
		[3]
(b) (i) (ii)	ΔH is +ve ✓ equilibrium moves to the right to compensate for increase in temperature/to lower the temperature / to minimise the change ✓	
,	increase in proportion of NO ✓ because K _c increases Can be linked to either increased proportion of NO or enthalpy change ✓	[4]
(iii	2NO + O ₂ → 2NO ₂ ✓ ✓ species correct for 1st mark 'simplest' balanced equation for 2nd mark NO + ¹/₂O₂ → NO₂ also gets both marks N₂O₄ is fine NO₂ for 1st mark	[2]

Downloaded from http://www.thepaperbank.co.uk

Fina	Mark	Scheme
	1 1986 211 15	JUICHIE

2816/01

(c)	Optimum Pressure	
, ,	low pressure ✓	
	fewer gaseous moles on left ✓	
	Optimum Temperature	
	optimum: low temperature ✓	
	forward reaction is exothermic ✓	
	Reason mark can only be awarded if the condition mark is correct.	
,	Condition mark is independent	
	1000°C used to increase rate with more energetic collisions <i>OR</i> so that a greater proportion of molecules exceed activation energy ✓	
	10 atm used to increase rate by increasing concentration <i>OR</i> increasing collisons ✓	!
	Catalyst used to increase rate by lowering the activation energy/providing a lower energy route ✓ NOT increase equilibrium yield	[7]
	Quality of written communication: Recognition of a compromise between rate and equilibrium amount ✓	[1]
		Total: 20

Final Mark Scheme Downloaded from http://www.thepaperbank.co.uk 2004

Question		Expected Answers	Marks
3 (a)	(i)	pH = -log[H⁺(aq)] ✓ state symbols not needed	[1]
	(ii) (iii)	HBr is stronger than CH₃COOH because pH is lower ✓ HBr dissociates more/more H⁺ ions for the same concentration ✓	[2]
]	(111)	diluting by a factor of 10/ 10-fold dilution ✓	[2]
		pH = 3 ✓ Credit a calculated pH for ecf from a wrong dilution with	
<u> </u>	·	working shown	
(b)	(i) .	K _w = [H ⁺ (aq)] [OH ⁻ (aq)] ✓ state symbols not needed	[1]
	(ii)	$[H^{+}(aq) = \frac{K_{w}}{[OH^{-}(aq)]} = \frac{1.0 \times 10^{-14}}{0.0200} = 5 \times 10^{-13} \text{mol dm}^{-3} \checkmark$	
		pH = $-\log (5 \times 10^{-13}) = 12.30 \checkmark$	1
		(accept calc value: 12.30103)	}
ļ		ecf is possible for pH mark providing that the [H ⁺] value has been derived from K _w /[OH]	
		If pOH method is used, pOH = 1.7 would get 1st mark, pH = 14 - 1.7 = 12.3 gets 2nd mark.	[2]
(c)	(i)	start at pH=3.4 (approx half way up 0-7 rise) ✓ sharp rise at 20 cm³ (must have a vertical part) ✓ finish higher above pH 7 than starting pHwith line continued to 50 cm³but finish pH is less than 14 ✓ NOTE that lines should not loop	[3]
	***		1
	(ii)	Indicator that has a pH range coinciding with steepest part of titration curve in (i).	
		Likely to be thymol blue OR brilliant yellow✓	
		pH range coincides withpH change during sharp rise /equivalence point ✓	[2]
			Total: 13
L		<u> </u>	1

mind talk

STANDER OF

Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2816/01

Question	Expected Answers	Marks
4 (a)	P: O = 43.7/31 : 56.3/16 / 1.41 : 3.52 ✓	
	Ratio P:O = 2 : 5 / Empirical formula = P ₂ O ₅ ✓	
	Molecular formula = P₄O₁₀ (from M₂ value) ✓	[3]
	Ca₃(PO₄)₂ ✓	
	Equations: $P_4 + 5O_2 \longrightarrow P_4O_{10} \checkmark$ (or $P_4 + 5O_2 \longrightarrow 2P_2O_5$)	[1]
	$P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4 \checkmark$ $(or P_2O_5 + 3H_2O \longrightarrow 2H_3PO_4)$	
	Ca ₃ (PO ₄) ₂ + 3H ₂ SO ₄ → 2H ₃ PO ₄ + 3CaSO ₄ ✓	[3]
	A candidate who writes an equation forming P ₄ O ₈ or P ₂ O ₃ can score the equation mark for oxidation of P ₄ .	
(b) (i)	H₃PO₄ > H₂PO₄⁻ > HPO₄²⁻ Increased strengths with increasing K₂ values✓	[1]
(ii)	Molar mass of Na₂HPO₄ = 142 g mol⁻¹ ✓	
	amount of Na₂HPO₄ = 4.26/142 = 0.03 mol ✓ e.c.f. mass/molar mass	
	volume of H₃PO₄ needed = 0.03 x 1000 / 0.5 = 60 cm³ ✓ e.c.f. moles Na₂HPO₄ x 1000/0.5	
	amount of NaOH = 2 x 0.03 = 0.06 mol ✓ e.c.f. 2 x moles Na₂HPO₄	
	volume of NaOH needed = 0.06 x 1000 / 0.5 = 120 cm³ ✓ e.c.f. moles NaOH x 1000/0.5	[5]
	Penalise units once.	
		Total: 13