

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2815/04

Methods of Analysis and Detection

Tuesday

29 JUNE 2004

Morning

50 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number	

TIME 50 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	13	
2	9	
3	10	
4	13	
TOTAL	45	

Answer all the questions.

1	We	see t	he flower of a poppy as red.
	(a)	Expl	ain why we see the poppy as a red colour.
		•••••	
		******	[1]
	(b)		related species, A and B , are responsible for the red colour of poppies and the colour of cornflowers.
			ОН
НΟ	\bigvee		HO O
	Į.	4	ОН
		ОН	A - red OH B - blue
		(i)	Explain, in terms of energy levels, why A and B are coloured.
			[3]
		(ii)	Suggest why A is red whereas B is blue.
			[2]

For Examiner's Use

(c)	Explain how the ionisation energy of hydrogen may be determined from its atomic emission spectrum.
	[5]
(d)	When an iron rod is heated in a flame, it eventually glows red.
	Suggest why the very hot metal appears red.
	[2]
	[Total: 13]

2

For Examiner's Use

11113	s que	stion concerns the analysis of organic compounds from their mass spectra.	
(a)	Wh	at is meant by the following terms used in mass spectrometry?	
	moi	lecular ion peak[1]	
	base peak		
(b)	o) In the mass spectra of organic compounds, a small peak exists at (M+1) that can help to determine the number of carbon atoms in the compound.		
	(i)	What is responsible for this (M+1) peak?	
		[1]	
	(ii)	In a mass spectrum of compound ${\bf D}$, this peak has a relative height of 0.7 compared with one of 10.4 for the molecular ion peak.	
		Calculate the number of carbon atoms in a molecule of compound ${\bf D}.$ Show your working.	

[2]

(c) A different compound, E, has the molecular formula C₇H₈O. The mass spectrum of compound E is shown below.

- (ii) What fragment ion is responsible for the peak at m/e 77?[1]
- (d) On reaction with a halogen, compound **E** forms compound **G**. The spectrum of compound **G** has an M and an (M+2) peak with the same relative abundance.
 - (i) Which halogen was used in the reaction? [1]
 - (ii) What is the value of m/e for the molecular ion peak for compound G?[1]

[Total: 9]

3 (a) Gas liquid chromatography and paper chromatography both use partition to separate the components of a mixture.

Identify the phases used for the partition in each method.

method	stationary phase	mobile phase	
gas/liquid chromatography			
paper chromatography			

[2]

(b) The chromatogram below shows the results of two-way chromatography on a mixture of dyes.

(i) Label, with a U, any dye which did not move in solvent 1.

- [1]
- (ii) Label, with an S, the dye which moved most in both solvents.

[1]

For Examiner's Use

in this question, one mark is available for the quality of white it communication.
Describe the process by which DNA may be used to produce a genetic fingerprint.
[5]
Quality of Written Communication [1]
[Total: 10]

2815/04 Jun04 [Turn over

(b) Compound J produced the three spectra given below.

For
Examiner
Hea

(i)	Compound J has the formula $C_xH_yO_2$, and is known to be saturated.	
	Use the mass spectrum to deduce the values of x and y , showing how you arrive at your answer.)
		·
	[2]	
(ii)	Use the i.r. spectrum to identify three absorptions due to characteristic bonds. You should quote the bond and the wavenumber of the absorption in the spectrum .	ļ
	1]
	2[1]	ו
	3[1]	
(iii)	Study the n.m.r. spectrum and use the <i>Data Sheet</i> to identify the proton environments that exist in compound J .	
<i>(</i> ;)	[3]	
(IV)	What extra information is provided by the splitting patterns?	
		.
		.
	[2]	
(v)	Use the data from the three spectra to suggest a structure for J.	
	[1]	
	[Total: 13]	
		1

END OF QUESTION PAPER