Mark	Unit Code	Session	Year	Version	
Scheme	2815/04	June	2004	1.02	
Page 1 of 4					
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument				
Question	Expected Answer	rs		Marks	
1 (a)	The pigment is ab	sorbing energy in th red region of the vis		1	
(b) (i) (ii)	 Energy is absorbed in promoting electrons from lower to higher orbitals. Some energy in the visible range is absorbed. The remainder of the light is reflected. The closer the energy levels the lower the energy absorbed The red form has less delocalisation / conjugation / shorter chromophore (or converse) This absorbs higher energy blue-violet region, (or converse) 				
ff	Salvage only :Description of chromophore scores 1 Diferent chromophores in A and B scores 1			5 max	
(c)	 Removal of electron represents ionisation This is represented by the convergence limit of the spectrum / becomes continuous / highest frequency / shortest wavelength. 			1	
	WavelengthUse E=hf to	/frequency of this lir give the energy cha he Avagadro number	mit is determined ange per atom	1 1 1 1	
(d)	Electrons hat / excited	1			
	When they cemit red light	drop back to lower e t (or equiv.)	1		
				Total: 13	

Mark	Unit Code	Session	Year	Version
Scheme	2815/04	June	2004	1.02
Page 2 of 4				
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument			
Question	Expected Answers			Marks
2 (a)	The molecular ion peak is that produced by the molecule (i.e. unfragmented) / highest <i>m</i> /e The base peak is the largest peak in the spectrum / most common / most stable fragment			1
				1
(b) (i)	¹³ C present in the molecule			1
(ii)	M : M+1 = 10.4 : 0.7 1.1% of sample is ¹³ C (somewhere)			1
	No. of carbon atoms = $\frac{0.7 \times 100}{10.4 \times 1.1}$ = 6.11 = 6 carbons			1
	If no working shown, only scores 1			
(c)	(i) 108			1
	(ii) C ₆ H ₅ ⁺ - no per	1		
(d)	(i) Bromine (ii) $M_r = 187$ – consequential on (c)(i) and (d)(i) if wrong halogen chosen			1
				1
				Total: 9

Mark Scheme	Unit Code 2815/04	Session June	Year 2004	Version 1.02	
Page 3 of 4					
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument				
Question	Expected Answers			Marks	

Mark	Unit Code	Session	Year	Version
Scheme	2815/04	June	2004	1.02
Page 4 of 4				
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument			
Question	Expected Answer	S		Marks
4 (a)	atomic emission – uv/visible n.m.r. – radio waves			1
(b) (i)	Mass peak is at <i>m/e</i> 74 If there are two O atoms, the carbon and hydrogen atoms must add up to 42 mass units			1
	Since D is saturated $x = 3$ and $y = 6$ Hence D is $C_3H_6O_2$ (correct formula scores both)			1
(ii)	I -OH at 2500-350	, o ⁻¹ } Cl	heck spectra for bels. Quoting from lata sheet not	1
	III –C-O at 1250 o		ermitted	1
(iii)	Proton at 11.7 δ attached to oxygen (-COOH) 2 protons at 2.3 δ from a C–CH ₂ - group δ 3 protons at 1.2 δ from a C–CH ₃ group δ			1 1 1
(iv)	Peak at 1.2 δ is next to a –CH ₂ - group / 2 equiv H Peak at 2.3 δ is next to -CH ₃ group / 3 equiv H or better			1
(v)	Hence J is CH ₃ CH ₂ COH			1
				Total: 13