| Mark | Unit Code | Session | Year | Version | | |--|---|---|------------------------------------|------------------|--| | Scheme | 2815/04 | June | 2004 | 1.02 | | | Page 1 of 4 | | | | | | | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | | | | Question | Expected Answer | rs | | Marks | | | 1 (a) | The pigment is ab | sorbing energy in th
red region of the vis | | 1 | | | (b) (i)
(ii) | Energy is absorbed in promoting electrons from lower to higher orbitals. Some energy in the visible range is absorbed. The remainder of the light is reflected. The closer the energy levels the lower the energy absorbed The red form has less delocalisation / conjugation / shorter chromophore (or converse) This absorbs higher energy blue-violet region, (or converse) | | | | | | ff | Salvage only :Description of chromophore scores 1 Diferent chromophores in A and B scores 1 | | | 5 max | | | (c) | Removal of electron represents ionisation This is represented by the convergence limit of the spectrum / becomes continuous / highest frequency / shortest wavelength. | | | 1 | | | | WavelengthUse E=hf to | /frequency of this lir
give the energy cha
he Avagadro number | mit is determined
ange per atom | 1
1
1
1 | | | (d) | Electrons hat / excited | 1 | | | | | | When they cemit red light | drop back to lower e
t (or equiv.) | 1 | | | | | | | | Total: 13 | | | Mark | Unit Code | Session | Year | Version | |--|--|---------|------|----------| | Scheme | 2815/04 | June | 2004 | 1.02 | | Page 2 of 4 | | | | | | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | | | Question | Expected Answers | | | Marks | | 2 (a) | The molecular ion peak is that produced by the molecule (i.e. unfragmented) / highest <i>m</i> /e The base peak is the largest peak in the spectrum / most common / most stable fragment | | | 1 | | | | | | 1 | | (b) (i) | ¹³ C present in the molecule | | | 1 | | (ii) | M : M+1 = 10.4 : 0.7
1.1% of sample is ¹³ C (somewhere) | | | 1 | | | No. of carbon atoms = $\frac{0.7 \times 100}{10.4 \times 1.1}$ = 6.11 = 6 carbons | | | 1 | | | If no working shown, only scores 1 | | | | | (c) | (i) 108 | | | 1 | | | (ii) C ₆ H ₅ ⁺ - no per | 1 | | | | (d) | (i) Bromine (ii) $M_r = 187$ – consequential on (c)(i) and (d)(i) if wrong halogen chosen | | | 1 | | | | | | 1 | | | | | | Total: 9 | | Mark
Scheme | Unit Code
2815/04 | Session
June | Year
2004 | Version
1.02 | | |--|---|-----------------|--------------|-----------------|--| | Page 3 of 4 | | | | | | | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | | | | Question | Expected Answers | | | Marks | | | Mark | Unit Code | Session | Year | Version | |--|--|---------------------------|--|-------------| | Scheme | 2815/04 | June | 2004 | 1.02 | | Page 4 of 4 | | | | | | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | | | Question | Expected Answer | S | | Marks | | 4 (a) | atomic emission – uv/visible
n.m.r. – radio waves | | | 1 | | (b) (i) | Mass peak is at <i>m/e</i> 74 If there are two O atoms, the carbon and hydrogen atoms must add up to 42 mass units | | | 1 | | | Since D is saturated $x = 3$ and $y = 6$
Hence D is $C_3H_6O_2$ (correct formula scores both) | | | 1 | | (ii) | I -OH at 2500-350 | ,
o ⁻¹ } Cl | heck spectra for
bels. Quoting from
lata sheet not | 1 | | | III –C-O at 1250 o | | ermitted | 1 | | (iii) | Proton at 11.7 δ attached to oxygen (-COOH) 2 protons at 2.3 δ from a C–CH ₂ - group δ 3 protons at 1.2 δ from a C–CH ₃ group δ | | | 1
1
1 | | (iv) | Peak at 1.2 δ is next to a –CH ₂ - group / 2 equiv H Peak at 2.3 δ is next to -CH ₃ group / 3 equiv H or better | | | 1 | | (v) | Hence J is CH ₃ CH ₂ COH | | | 1 | | | | | | Total: 13 |