Downloaded from http://www.thepaperbank.co.uk AZ TRANSITION ELEMENT Mark Scheme 2815/06 June 2004 | Question | Expected Answers | Marks | | |----------|---|----------|--| | 1(a) | From orange to green (accept green/blue but not blue) | 2 | | | · | Diagram to show | | | | (b) (i) | Salt bridge | | | | | Voltmeter | 1 | | | | Solution containing both Cr ₂ O ₇ ²⁻ and Cr ³⁺ | 1 | | | | Platinum electrode | 1 | | | | | 1 | | | | Pressure 101 kPa/1 Atm/100kPa | | | | (ii) | Temperature 298K/25° C | 1 | | | | Concentration of each solution 1 mol.dm ⁻³ | 1 | | | | • | 1 | | | 1 | $3H_2 + Cr_2O_7^{2} + 8H^+ \rightarrow 2Cr^{3+} + 7H_2O$ | | | | (c) | Correct species both sides | | | |) | Balancing (do not allow if electrons or H ⁺ not cancelled) | 1 | | | | | 1 | | | } | Equilibrium involving Cr ₂ O ₇ ²⁻ moves to RHS | | | | | Therefore SEP more positive or Cr ₂ O ₇ ²⁻ gains electrons | | | | (d) | more readily / is more easily reduced / becomes a better | 1 | | | | oxidising agent | 1 | | |) | | | | | | | | | | 1 | | Total:13 | | | Question | Expected Answe | Marks | | | |----------|--|---------------------|---|---------------| | 3 (a) | Formula (| | | | | | [Ni(H ₂ O) ₈] ²⁺ | 6 | +2 | 2 | | | CuCl ₂ | 2 | +1 | 2 | | (b) | Both types of iso | | | | | | Cis trans: | 1 | | | | | 2 diagrams | with correct form | ulae | 1 | | | correctly labelled | d cis and trans | | 2 | | | Optical: | s dis aria garis | | 1 | | } | | sable mirror image | es | | | Ì | Rotate (plane) p | 1 | | | | 1 | | | e ligand / 4 different li | igands 1 | | | arranged tetrahe 2 diagrams | edrally / any other | asymmetric complex | 1 | | | correct charges | on all formulae | | | | | | | | 2 | | | OM/C The man | | | 1 | | | | | organised and logica
nical terms from the | Max 9 for (b) | | | | | sable, mirror images, | , } | | | | | , asymmetric, chiral,
planar, tetrahedral. | | | | | | | | | | | | • | 1 | | | | | | Total: 14 | | L | | | | ł | ## Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2815/06 June | Expected Answers | Marks | |---|--| | A redox reaction involves oxidation and reduction Chooses: | 1 | | Identify species oxidised and reduced by use of oxidation numbers or electron transfer | 1 | | Chooses: CoCl₄²⁻ + 6NH₃ → [Co(NH₃)e]²⁻ + 4Cl⁻ Replacement of existing ligand By a stronger ligand / a different ligand present in higher concentration | 1 1 1 | | Allow <u>stepwise</u> replacement of one ligand by another for 2 marks | Total: 6 | | | A redox reaction involves oxidation and reduction Chooses: 2Cu ⁺ → Cu ²⁺ + Cu Identify species oxidised and reduced by use of oxidation numbers or electron transfer Chooses: CoCl ₄ ²⁻ + 6NH ₃ → [Co(NH ₃) ₆] ²⁻ + 4Cl ⁻ Replacement of existing ligand By a stronger ligand / a different ligand present in higher concentration Allow <u>stepwise</u> replacement of one ligand by another for 2 | ye 30 ka 44 **4** 402.