Downloaded from http://www.thepaperbank.co.uk

A 2 CHAINS, RINGS & SAEUROSCOPY Mark Scheme 2814

June 2004

Downloaded from http://www.thepaperbank.co.uk

Abbreviations, annotations and conventions used in the mark scheme

= alternative and acceptable answers for the same marking point

= separates marking points

NOT = answers not worthy of credit

() = words which are not essential to gain credit (underlining) = key words which <u>must</u> be used

ecf = allow error carried forward in consequential marking

AW = alternative wording ora = or reverse argument

Marking structures in organic chemistry When a structure is asked for, there must be sufficient detail using conventional carbon skeleton and functional group formulae (e.g. CH_3 , C_2H_5 , COOH, $COOCH_3$) to <u>unambiguously</u> define the arrangement of the atoms. (E.g. C_3H_7 would not be sufficient).

If not specified by the question, this may be given as either:

a structural formula - e.g. CH₃CH(OH)C₂H₅,

a skeletal formula – e.g.

a displayed formula – e.g

or as a hybrid of these - e.g.

The following errors should be penalised – although each one only loses a maximum of one mark on the paper:

- clearly connecting a functional group by the wrong atom.
- showing only 'sticks' instead of hydrogen atoms

e.g.

Benzene rings may be represented as as well as in any of the types of formula above.

Final Mark Scheme Downloaded from http://www.thepaperbank.co.uk

1	(a)	(i)	carboxylic acid ✓	NOT 'carboxyl'	[1]
		(li)	CH₃CH(NH₂)COO ⁻ Na ⁺ or a displayed structure	Allow 1 overall for	
			where	covalent O – Na or missing charge on	
			COO⁻ / COONa ✓	COO but otherwise correct	
			rest of the structure including Na also correct ✓		[2]
		(iii)	water / H₂O ✓		[1]
	(b)		H₃N ⁺ becomes H₂N ✓ rest of the molecule unchanged ✓		[2]
	(c)		condensation / water molecule removed / created (or shown)✓		i
1			NH ₂ (from one molecule) reacts with the COOH (from the other molecule) (or shown by drawing around the groups) ✓ AW	allow any correct displayed isomer of C ₃ H ₇	
			H C—C—N— displayed at least once ✓	allow ALA-ALA and VAL-VAL	
			one correct dipeptide structure - eg	allow -CO-NH- on the dipeptides	
			second correct dipeptide structure – eg		
			С ₃ H ₇ H СН ₃ H ₂ N—С—С—N—С—СООН H 0 H		
			/ or ecf which clearly shows the idea of amino acids swapping		
					[5]
				[Total:	11]

[Total: 16]

2	(a)	A	phenol ✓ B ketone / Carbonyl ✓	NOT 'hydroxyl' for A or C	
		С	(secondary) alcohol ✓		[3]
	(b) (i)	В	'/ ketone / carbonyl ✓		[1]
	(11)	ye pı	ellow/orange/red ✓ recipitate/crystals/solid ✓		[2]
	(iii	i) (g	gingerol would not react because)		
		o R	does not contain an aldehyde group / nly aldehydes can react with Tollens' leagent / only aldehydes can be easily xidised /		
			etones cannot be oxidised further	NOT just "ketones don't react" etc	[1]
	(c)		но		£41
			/ phenol / A	do not penalise the CH ₃ O- if included	[1]
,	(d) (i)	,	promination of the benzene ring 🗸	allow mono, di or tri-bromination at any position	
			CH3O BL		
		(о он other functional groups unaffected ✔		
					[2]
	(i	i) I	HBr / hydrogen bromide		[1]
	(e)		Peak at 3400cm ⁻¹ labelled O-H ✓ Peak at 1700cm ⁻¹ labelled C=O ✓	if more than two peaks labelled, mark incorrect peaks first	[2]
	(f) (i		same structural / displayed formula / same order of bonds ✓		
		(different spatial /3-d arrangement ✓		[2
	(i	i) (optical isomerism ✓		[1]

3 (a) (i)	(conc) H ₂ SO ₄	NOT just H ⁺ / acid or anything suggesting the acid is dilute	[1]
((ii)	to prevent loss (of reactants / products) by evaporation / vapours <i>AW</i>		[1]
(b) (H-C-H H-C-H H-C-H		
		rest of the structure also correct ✓		[2]
((ii)	butan-2-ol ✓	NOT just butanol	[1]
(c)		flavouring / perfume	NOT any solvent type uses such as nail-varnish nor medicines etc	[1]
			[Tota	l: 6]

(a) % O = 45.1 ✓

C = 50.7/12.0 = **4.2**

 $4.225 / 2.819 = 1.499 \approx 1.5 = 3$

H = 4.2 / 1.0 = 4.2

 $4.2/2.819 = 1.490 \approx 1.5 = 3$

O = 45.1 / 16.0 = 2.8 (ecf) 'calculation of moles ✓

2.819 / 2.819 = 1.000 = 1.0 = 2

C₃H₃O₂ clearly deduced from the ratio of moles ✓

NOT any method which works back from the molecular formula

(b) (i) empirical formula has $M_r = 36 + 3 + 32 = 71$ (or ect) \checkmark

2 x empirical $M_r = 142$ / within range 138-144 \checkmark

Only allow ecf on 2^{nd} Mark if $2 \times M_r$ is still 138 - 144

- (ii) mass spectrometry ✓
- (c) any valid structure eg

(d) (i) carbon with 4 different groups attached ✓

Allow "functional groups"

(ii)

(e) (i) carboxylic acid / COOH protons

NOT "OH protons"

- (ii) D replaces protons on OH groups/ OH protons are labile ✓ Peak for (CO) OH protons disapears ✓
- (iii) (E is correct structure because ...)

peaks Y and Z are due to two (equivalent) protons ✓

EITHER COMPARING PEAK AREAS...

structure E has groups: = CH₂ / two CH ✓ structure F would give a peak with area 3 / area 1

OR COMPARING THE NUMBER OF PEAKS...

structure E has three environments / H_{a1} H_{b1} H_c are labelled on the structure ✓ structure F would give four peaks (incl. COOH)

ignore which they assign to peaks Y and Z

ignore any reference to shift values or (lack of) splitting

[Total: 15]

Final Mark Scheme

2814

June 2004

[Total: 17]

(a)	stage 1	HCN and KCN ✓ nucleophilic addition ✓	allow KCN with HCl/H₂SO₄ or HCN with NaOH for the	
	CH	CHO + HCN ——→ CH₃CH(OH)CN ✓	first two marks, but acid / alkali does not score on its own.	
	stage 2	(named) dilute acid /H⁺(aq) ✓ heat/reflux ✓ hydrolysis ✓	reagents and conditions can be on either line	
		I)CN + 2H₂O> CH₃CH(OH)COOH +NH₃ g H⁺ on the left to give NH₄⁺ ✓		
,				[8]
(b) (i)	condensati	on 🗸		[1]
(11)	нсн,	or etc ✓		
(Ji	natural pro	on because) cesses (often) produce one (optical) isomer ✔ ly gives a mixture of (both optical) isomers ✔	•	. [1] [2]
(c) (i)	poly(prope	ne), poly(phenylethene) etc ✓	must be a hydrocarbon allow new or old names	[1]
(ii	atactic ✓ syndiotacti	c ✓		[2]
(d)		epeat of a polyester with 'sticks' / bracketed … ond displayed/skeletal ✔	Do NOT allow H or OH at either end if no brackets	
		/ hydrogens also correct and the repeat		
		H-C-H H-C-H		
	ί ο	1 / [" 0]	,	[2]

¥4. + A

Final Mark Scheme

2814

June 2004

6 (a) ethylamine/bases react with/accept a proton/H* <

to give C₂H₅NH₃⁺ ✓

(using the) lone pair of electrons on the N atom of the amine / lone pair shown on N of a correct structure of the amine ✓

a dative covalent bond forms between N and H / curly arrow shown from lone pair towards H⁺ / dative bond shown from N to H ✓

must be stated somewhere

H' H'

C₂H₅NH₂ Or C₂H₅NH₂

could score the last two marks

(b) (phenylamine is a weaker base because ...)

the phenyl group pulls electrons away from the nitrogen

Must be clear which way electrons are going

the lone pair is delocalised / interacts with the π electrons over the ring / or shown in a suitable diagram – eg

the lone pair is not donated as easily / is less available / H⁺ is not accepted as easily ✓

[Total: 7

[3

[4]

7 (a)) (i)	iron / iron(III)bromide / aluminium chloride etc ✓	accept any iron(III) or aluminium	
			chloride/bromide but NOT just "iron bromide"	[1
	(ii)	halogen carrier ✓	accept Lewis but NOT "Friedel-Crafts catalyst"	[1
	(iii)	$C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$	allow H* and Br -	
		HBr as product ✓ rest of the equation also correct ✓	allow a balanced equation for di or tri but bromination	[2
	(iv)	bromobenzene	allow name from di or tribromination in (iii) as long as they are correct	[1
(b)	н•		
		Br* H Br step 2	3r	
		reactants intermediate proc	lucts	
		curly arrow from benzene π-bond to Br⁺ ✓	check curly arrows clearly start and finish at the correct atom / bond	
		correct intermediate ✓ curly arrow from C-H bond to gap in π-bond ✓	the 'smile' must reach round all 5 carbons with the + clearly not on the	
		H ⁺ and bromobenzene as products ✓	tetrahedral carbon	[4

Question 7 continues overlea

7 (c) (i) p-orbitals overlap above and below the ring / stated in words or shown in either diagram ✓

> correct diagrams of π -bonds in cyclohexene and benzene:

 π -bond(s)/electrons are labelled in either diagram or their position is described in words.

 π -bonding is drawn: in cyclohexene ✓ in benzene ✓

 π -bond(s)/ electrons are labelled in either diagram or their position is described in words 🗸

4 marks on π-bonding

(ii) the negative charge/ π electrons are more spread out / delocalised (in benzene ora) ✓

the bromine is less polarised / a catalyst is needed to polarise the bromine (in benzene ora) 🗸

electophiles / bromine are less attracted (to benzene ога) ✓

more energy is needed (to break the π -bond) due to do NOT give the last mark for the delocalisation (in benzene ora)

AW

ANY 3 out of 4 marks explaining the different reactivity

Quality of Written Communication

one mark for the correct use and organisation of the following terms: p-orbitals, delocalised ✓

one mark for correct spelling, punctuation and grammar in at least two sentences ✓

Do **NOT** give the diagram mark if a double bond is also shown

allow any reasonable attempt at the benzene π -bonding, but not a simple

[4]

these marks can be gained from the explanation of the relative reactivity of either benzene or cyclohexene but a comparison must be made for each mark

just saying that benzene is more stable than cyclohexene

> max [3]

> > [2]

[Total: 18]