Downloaded from http://www.thepaperbank.co.uk

AS FOUNDATION CHEMINALY
Mark Scheme 2811
June 2004

Downloaded from http://www.thepaperbank.co.uk

Final Mark Scheme

2811

June 2004

Question		Expected Answers			Marks	
1						
(a)		isotop e	protons	neutrons	electrons	
` ,		nickel-58	28	30	28	
		nickel-60	28	32	28	
		nickel-62	28	34	28	
			✓	✓.	✓	[3]
		For ecf, 3rd column	same as firs	it column.		
(b)	(i)	mass spectrometry ✓ mass spec /mass spectrometer should also be credited				[1]
	(ii)	average mass/weighted mean mass of an atom compared with carbon-12 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 mass of 1 mole of atoms (of an element) mass of 1 mole of carbon-12 is equivalent to first two marks "mass of the element that contains the same number of atoms as are in 1 mole of carbon-12"> 2 marks (mark lost because of mass units)			[3]	
	(III) 63.0 x 77.2/100 + 65.0 x 22.8/100 / 63.456 ✓ = 63.5 (mark for significant figures) ✓			✓	[2]	
	(iv)	copper/ Cu ✓				[1]
(c)	(i) (ii)	mass of Ni = 2.0.g moles of Ni = 2.0/5 (1 mark would typic mol) 2nd mark is for the	8.7 mol = 0.0 cally result fro	om no use of	25% → 0.136	[2]
	\"''	number of atoms of a 2.05 x 10 ²² / 2.1 center of a 2.1 cente	x 10 ²² atoms wn to 2.1 or 18/8.2 x 10 ²²	2.0 or 2 (if 2.	•	[1]
						Total: 13

Final Mark Scheme Downloaded from http://www.thepaperbank.co.uk

Question			Expected Answers	Marks	
2	(a)	(a) (i) ⊕ -⊕ -⊕ ⊕ -⊕ -⊕ -⊕ ⊕ -⊕ -⊕			
			positive ions/cations ✓ and negative electrons ✓ Can be described in words only for both marks	[2]	
 		(ii)	contain free/mobile/delocalised electrons ✓	[1]	
	(b)	(i)	shared pair of ✓ electrons ✓ i.e. 'shared electrons' is worth 1 mark. pair of electrons for second marks	[2]	
		(ii)	correct dot-and cross diagram ✓	[1]	
	(c)	(i)	electrostatic attraction ✓ between oppositely charged ions ✓ (charged or electrostatic for 1st mark)	[2]	
		(ii)	correct dot-and cross diagram ✓ correct charges ✓	[2]	
		(iii)	Mg \longrightarrow Mg ²⁺ + 2e ⁻ \checkmark F ₂ + 2e ⁻ \longrightarrow 2F ⁻ \checkmark - sign not required with electron	[2]	
		(iv)	solid: ions cannot move /in fixed positions in lattice ✓ solution: ions are free to move ✓	[2]	
				Total: 14	

Question Expected Answers			Marks
3 (a)		NaClO, oxidation state = +1 ✓ NaCl, oxidation state = ~1 ✓ OR Oxidation number decreases from NaClO —→ NaCl ✓ by 2 ✓	[2]
(b)) (i)	84/24000 = 3. 5 x 10 ⁻³ mol ✓	[1]
	(ii)	3.5 x 10 ⁻³ mol ✓ ans to (i)	[1]
	(iii)	$3.5 \times 10^{-3} \times 1000/5 = 0.70 \text{ mol dm}^{-3} \checkmark$ ans to (ii) x 1000/5	[1]
(c)	:)	molar mass of NaClO = 23 + 16 + 35.5 = 74.5 (g mol ⁻¹) ✓	
		concentration = 0.70 x 74.5 = 52.15 g (dm ⁻³) ✓ ans to (iii) x 74.5	
		bleach is 5.215 g per 100 cm³ and the information is correct (as this value exceeds 4.5%) ✓	[3]
		response depends upon answer to (b)(iii). Could be opposite argument if ans < 4.5%	
		OR molar mass of NaClO = 23 + 16 + 35.5 = 74.5 (g mol ⁻¹) ✓	
		moles of NaOCl = 4.5/74.5 = 0.0604 mol (in 100 cm³) ✓	
		bleach is 10 x 0.0604 ≈ 0.604 mol dm ⁻³ which is less than answer to (b)(iii) and therefore label is correct. ✓	
		response depends upon answer to (b)(iii). Could be opposite argument if ans 0.604	
(d		2HCl + NaClO → Cl₂ + NaCl + H₂O ✓✓ Award one mark for: HCl + NaClO → Cl₂ + NaOH	[2]
			Total: 10

Downloaded from http://www.thepaperbank.co.uk

Final Mark Scheme

2811

June 2004

Question			Expected Answers	Marks
4	(a) (i) Answer is inclusive of 9 − 14 inclusive ✓		Answer is inclusive of 9 − 14 inclusive ✓	[1]
		(ii)	Ca(s): 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² ✓	
			Ca(OH)₂(aq): 1s²2s²2p ⁶ 3s²3p ⁶ ✓	[2]
	(b)	(i)	Identity of precipitate A: calcium carbonate / CaCO₃ ✓	
			Equation: Ca(OH) ₂ + CO ₂ → CaCO ₃ + H ₂ O ✓ equation alone would score 2 marks unless contradicted by identity	[2]
		(ii)	Formula of solution B: Ca(HCO₃)₂ ✓	
			Equation: CaCO ₃ + H ₂ O + CO ₂	[2]
		(iii)	CaCl₂ ✓	[1]
	(c)		barium atoms are larger ✓	
			barium atoms have more shielding ✓	
			this outweighs the increase in nuclear charge ✓	
			barium electrons are lost more easily	
			/less energy required /ionisation energy decreases ✓	[4]
				Total: 12

June 2004

Question	Expected Answers	Marks	
5 (a)	H₂O H bonding from O of 1 molecule to H of another ✓ dipoles shown or described ✓ with lone pair of O involved in the bond ✓	[3]	
	CH₄ van der Waals' forces from oscillating dipoles/ temporary dipoles/ transient dipoles/ instantaneous dipoles ✓		
,	leading to induced dipoles ✓ caused by uneven distribution of electrons ✓	[3] sub-total: 6	
(b)	Two properties from: Ice is less dense/lighter than water/floats on water/ max density at 4°C explanation: H bonds hold H ₂ O molecules apart		
	/ open lattice in ice / H-bonds are longer ✓	[2]	
	Higher melting/boiling point than expected ✓ Not just high Accept: 'unusually high/strangely high/relatively high' explanation: H bonds need to be broken ✓ must imply that intermolecular bonds are broken	[2]	
	High surface tension ✓ explanation strength of H bonds across surface ✓	[2] mark 2 properties only	
	QoWC over whole question - legible text with accurate spelling, punctuation and grammar ✓	[1]	
		Total: 11	