Downloaded from http://www.thepaperbank.co.uk AS FOUNDATION CHEMINALY Mark Scheme 2811 June 2004 ## Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2811 June 2004 | Question | | Expected Answers | | | Marks | | |----------|--|--|---|-----------------|-------------|-----------| | 1 | | | | | | | | (a) | | isotop e | protons | neutrons | electrons | | | ` , | | nickel-58 | 28 | 30 | 28 | | | | | nickel-60 | 28 | 32 | 28 | | | | | nickel-62 | 28 | 34 | 28 | | | | | | ✓ | ✓. | ✓ | [3] | | | | For ecf, 3rd column | same as firs | it column. | | | | (b) | (i) | mass spectrometry ✓ mass spec /mass spectrometer should also be credited | | | | [1] | | | (ii) | average mass/weighted mean mass of an atom
compared with carbon-12
1/12th of mass of carbon-12/on a scale where carbon-12 is
12
mass of 1 mole of atoms (of an element) mass of 1 mole of
carbon-12 is equivalent to first two marks
"mass of the element that contains the same number of
atoms as are in 1 mole of carbon-12"> 2 marks (mark lost
because of mass units) | | | [3] | | | | (III) 63.0 x 77.2/100 + 65.0 x 22.8/100 / 63.456 ✓ = 63.5 (mark for significant figures) ✓ | | | ✓ | [2] | | | | (iv) | copper/ Cu ✓ | | | | [1] | | (c) | (i)
(ii) | mass of Ni = 2.0.g
moles of Ni = 2.0/5
(1 mark would typic
mol)
2nd mark is for the | 8.7 mol = 0.0
cally result fro | om no use of | 25% → 0.136 | [2] | | | \"'' | number of atoms of a 2.05 x 10 ²² / 2.1 center of a cente | x 10 ²² atoms
wn to 2.1 or
18/8.2 x 10 ²² | 2.0 or 2 (if 2. | • | [1] | | | | | | | | Total: 13 | ## Final Mark Scheme Downloaded from http://www.thepaperbank.co.uk | Question | | | Expected Answers | Marks | | |----------|-----|--|--|-----------|--| | 2 | (a) | (a) (i) ⊕ -⊕ -⊕
⊕ -⊕ -⊕ -⊕
⊕ -⊕ -⊕ | | | | | | | | positive ions/cations ✓ and negative electrons ✓ Can be described in words only for both marks | [2] | | |
 | | (ii) | contain free/mobile/delocalised electrons ✓ | [1] | | | | (b) | (i) | shared pair of ✓ electrons ✓ i.e. 'shared electrons' is worth 1 mark. pair of electrons for second marks | [2] | | | | | (ii) | correct dot-and cross diagram ✓ | [1] | | | | (c) | (i) | electrostatic attraction ✓ between oppositely charged ions ✓ (charged or electrostatic for 1st mark) | [2] | | | | | (ii) | correct dot-and cross diagram ✓ correct charges ✓ | [2] | | | | | (iii) | Mg \longrightarrow Mg ²⁺ + 2e ⁻ \checkmark
F ₂ + 2e ⁻ \longrightarrow 2F ⁻ \checkmark
- sign not required with electron | [2] | | | | | (iv) | solid: ions cannot move /in fixed positions in lattice ✓ solution: ions are free to move ✓ | [2] | | | | | | | Total: 14 | | | Question Expected Answers | | | Marks | |---------------------------|-------|--|-----------| | 3 (a) | | NaClO, oxidation state = +1 ✓ NaCl, oxidation state = ~1 ✓ OR Oxidation number decreases from NaClO —→ NaCl ✓ by 2 ✓ | [2] | | (b) |) (i) | 84/24000 = 3. 5 x 10 ⁻³ mol ✓ | [1] | | | (ii) | 3.5 x 10 ⁻³ mol ✓
ans to (i) | [1] | | | (iii) | $3.5 \times 10^{-3} \times 1000/5 = 0.70 \text{ mol dm}^{-3} \checkmark$ ans to (ii) x 1000/5 | [1] | | (c) | :) | molar mass of NaClO = 23 + 16 + 35.5 = 74.5 (g mol ⁻¹) ✓ | | | | | concentration = 0.70 x 74.5 = 52.15 g (dm ⁻³) ✓ ans to (iii) x 74.5 | | | | | bleach is 5.215 g per 100 cm³ and the information is correct (as this value exceeds 4.5%) ✓ | [3] | | | | response depends upon answer to (b)(iii). Could be opposite argument if ans < 4.5% | | | | | OR
molar mass of NaClO = 23 + 16 + 35.5 = 74.5 (g mol ⁻¹) ✓ | | | | | moles of NaOCl = 4.5/74.5 = 0.0604 mol (in 100 cm³) ✓ | | | | | bleach is 10 x 0.0604 ≈ 0.604 mol dm ⁻³ which is less than answer to (b)(iii) and therefore label is correct. ✓ | | | | | response depends upon answer to (b)(iii). Could be opposite argument if ans 0.604 | | | (d | | 2HCl + NaClO → Cl₂ + NaCl + H₂O ✓✓ Award one mark for: HCl + NaClO → Cl₂ + NaOH | [2] | | | | | Total: 10 | ## Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2811 June 2004 | Question | | | Expected Answers | Marks | |-------------|---|-------------|---|-----------| | 4 | (a) (i) Answer is inclusive of 9 − 14 inclusive ✓ | | Answer is inclusive of 9 − 14 inclusive ✓ | [1] | | | | (ii) | Ca(s): 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² ✓ | | | | | | Ca(OH)₂(aq): 1s²2s²2p ⁶ 3s²3p ⁶ ✓ | [2] | | | (b) | (i) | Identity of precipitate A: calcium carbonate / CaCO₃ ✓ | | | | | | Equation: Ca(OH) ₂ + CO ₂ → CaCO ₃ + H ₂ O ✓ equation alone would score 2 marks unless contradicted by identity | [2] | | | | (ii) | Formula of solution B: Ca(HCO₃)₂ ✓ | | | | | | Equation: CaCO ₃ + H ₂ O + CO ₂ | [2] | | | | (iii) | CaCl₂ ✓ | [1] | | | (c) | | barium atoms are larger ✓ | | | | | | barium atoms have more shielding ✓ | | | | | | this outweighs the increase in nuclear charge ✓ | | | | | | barium electrons are lost more easily | | | | | | /less energy required /ionisation energy decreases ✓ | [4] | | | | | | Total: 12 | June 2004 | Question | Expected Answers | Marks | | |----------|---|----------------------------|--| | 5 (a) | H₂O H bonding from O of 1 molecule to H of another ✓ dipoles shown or described ✓ with lone pair of O involved in the bond ✓ | [3] | | | | CH₄ van der Waals' forces from oscillating dipoles/ temporary dipoles/ transient dipoles/ instantaneous dipoles ✓ | | | | , | leading to induced dipoles ✓ caused by uneven distribution of electrons ✓ | [3]
sub-total: 6 | | | (b) | Two properties from: Ice is less dense/lighter than water/floats on water/ max density at 4°C explanation: H bonds hold H ₂ O molecules apart | | | | | / open lattice in ice
/ H-bonds are longer ✓ | [2] | | | | Higher melting/boiling point than expected ✓ Not just high Accept: 'unusually high/strangely high/relatively high' explanation: H bonds need to be broken ✓ must imply that intermolecular bonds are broken | [2] | | | | High surface tension ✓ explanation strength of H bonds across surface ✓ | [2] mark 2 properties only | | | | QoWC over whole question - legible text with accurate spelling, punctuation and grammar ✓ | [1] | | | | | Total: 11 | |