

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2816/01

Unifying Concepts in Chemistry

Wednesday

21 JANUARY 2004

Morning

1 hour 15 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE			
Qu.	Max.	Mark	
1	16		
2	17		
3	13		
4	14		
TOTAL	60		

2

For Examiner's Use

Answer all the questions.

1 The formation of ethyl ethanoate and water from ethanoic acid and ethanol is a reversible reaction which can be allowed to reach equilibrium. The equilibrium is shown below.

$$CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$$

(a) Write the expression for K_c for this equilibrium system.

[2]

- (b) A student mixed together 6.0 mol ethanoic acid and 12.5 mol ethanol. A small amount of hydrochloric acid was also added to catalyse the reaction. He left the mixture for two days to reach equilibrium in a water bath at constant temperature, after which time 1.0 mol ethanoic acid remained.
 - (i) Complete the table below to show the equilibrium composition of the equilibrium mixture.

component	CH3COOH	C ₂ H ₅ OH	CH ₃ COOC ₂ H ₅	H ₂ O
initial amount/mol	6.0	12.5	0.0	0.0
equilibrium amount/mol				

[2]

(ii) Calculate K_c to two significant figures. State the units, if any. The total volume of the equilibrium mixture is $1.0\,\mathrm{dm}^3$.

 $K_c =$ units [2]

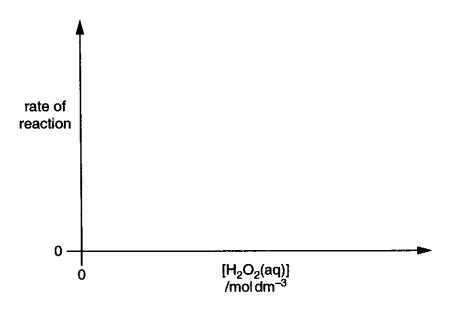
For Examiner's Use

(c)	What could he do to be sure that equilibrium had been reached?			

		[2]		
(d)	The	student added more ethanol to the mixture.		
	(i)	State, giving a reason, what would happen to the composition of the equilibrium mixture.		
		[2]		
	(ii)	What happens to the value of K_c ?		
		[1]		
(e)	Sta	e student added more of the acid catalyst to the mixture. te, giving a reason, what would happen to the composition of the equilibrium ture.		
	••••			
		[2]		
(f)		e student repeated the experiment at a higher temperature and found that the value ζ_c decreased.		
	(i)	State, giving a reason, what would happen to the composition of the equilibrium mixture.		
		[2]		
	(ii)	What additional information does this information tell you about the reaction?		
		[1]		
		[Total: 16]		

4

For Examiner's Use


,~		anced equation aqueous iodine		ull reaction bet	ween H ₂ O ₂ (aq),
•••••					
					concentrations of asured for each of
The	experimer	ntal results are	shown below.	_	
ex	periment	[H ₂ O ₂ (aq)] /mol dm ⁻³	[I ⁻ (aq)] /mol dm ⁻³	[H ⁺ (aq)] /mol dm ⁻³	rate /mol dm ⁻³ s ⁻¹
	1	0.010	0.010	0.005	1.15×10 ⁻⁶
	2	0.010	0.020	0.005	4.60×10 ⁻⁶
	3	0.010	0.020	0.010	4.60×10 ⁻⁶
(i)		-			ers for I ⁻ and for
(ii)	This react	ion is first orde	r with respect to	 Ο Η ₂ Ο ₂ .	
(ii)	This react Use this ir reaction.	ion is first orde	r with respect to	o H ₂ O ₂ . to (i) to comple	

5

For Examiner's Use

(c) This reaction was shown to be first order with respect to H₂O₂ by plotting a rate-concentration graph.

Using the axes below, sketch a graph to show how the rate of this reaction changes with increasing H_2O_2 concentration.

[2]

(d) Hydrogen peroxide readily decomposes to give water and oxygen.

Hydrogen peroxide is sold by volume strength. For example, 20-volume $\rm H_2O_2$ yields 20 volumes of oxygen gas for each volume of aqueous $\rm H_2O_2$ solution.

(i) Construct an equation for the decomposition of hydrogen peroxide.

.....[1]

(ii) Determine the concentration, in mol dm⁻³, of 20-volume hydrogen peroxide.

Show all your working clearly.

answer mol dm⁻³ [3]

[Total: 17]

6

For Examiner's Use

3	Carbonic acid, H ₂ CO ₃ , is a weak Bronsted-Lowry acid formed when carbon dioxide
	dissolves in water. Blood contains several buffer solutions and healthy blood is buffered to a
	pH of 7.40. The most important buffer solution in blood is a mixture of carbonic acid and
	hydrogencarbonate ions, HCO ₃ ⁻ .

The equilibrium in the carbonic acid / hydrogencarbonate buffer system is shown below.

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$
 $K_a = 4.17 \times 10^{-7} \text{ mol dm}^{-3}$

(a) Carbonic acid is a weak Bronsted-Lowry acid.

What is meant by the following terms?

(i)	A Bronsted-Lowry acid.	
(ii)	A weak acid.	
(iii)	pH.	
(iv)	A buffer solution.	

For Examiner's Use

(b)) In this question, one mark is available for the quality of written communication.				
	Explain how the carbonic acid / hydrogencarbonate buffer works. Use equations to help your answer.				
	[4]				
	Quality of Written Communication [1]				
(c)	Calculate the ratio $\frac{[HCO_3^-(aq)]}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.				

[4]

[Total: 13]

8

For Examiner's Use

4 Maleic anhydride (*cis*-butenedioic anhydride) is an important industrial chemical. The structure of maleic anhydride is shown below.

maleic anhydride
$$C_4H_2O_3$$

- (a) In industry, maleic anhydride is produced on a large scale by oxidation of butane in air over a hot catalyst.
 - (i) Suggest the industrial source of butane.

.....[1]

(ii) An incomplete equation for this reaction is given below.

Complete the equation.

$$C_4H_{10} + \dots \rightarrow C_4H_2O_3 + \dots$$
 [2]

(iii) Calculate the mass, in kg, of maleic anhydride that could be made by completely converting $30 \,\mathrm{m}^3$ of butane in this reaction. $(1 \,\mathrm{m}^3 = 1000 \,\mathrm{dm}^3)$

Assume that the molar volume of butane under the conditions used is 24 dm³.

answer kg [3]

9

For Examiner's Use

(b) Maleic anhydride can be converted into tartaric acid by reaction with water and a suitable oxidising agent.

Deduce the empirical formula of tartaric acid.

[2]

- (c) 'Cream of tartar' is often used in cookery.

 This compound can be prepared by reacting aqueous solutions of tartaric acid and potassium hydroxide in 1:1 molar proportions.
 - (i) Complete the equation below for the preparation of 'cream of tartar'.

tartaric acid

'cream of tartar'

[2]

(ii) Suggest another chemical that would react with aqueous tartaric acid. The chemical you choose should not be a hydroxide or an oxide.

State what you would expect to see and write an equation for your chosen reaction.

observation(s)

equation

[4]

[Total: 14]

10

END OF QUESTION PAPER

BLANK PAGE

	12		
			·
DCR has made every effort to trace the copyright holders of items used	d in this Question names but if we be	ve inarrivertently overlanded a	wa analasias
	а ино окообной рарат, виг и w e на	re mauvenently overlooked any,	wa shoiogise.