Downloaded from http://www.thepaperbank.co.uk

A2 CHEMISTRY
ONIFMING CONCEPTS
Mark Scheme 2816/1
January 2004

Question		Expected Answers	Marks
1 (a)		$K_{c} = \frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]} \checkmark \checkmark$ award 1 mark if upside down	[2]
(b)	(i)	CH₃COOH C₂H₅OH CH₃COOC₂H₅ H₂O 6.0 12.5 0 0 1 7.5 5 5	[2]
	(ii)	$K_c = \frac{5 \times 5}{1 \times 7.5} = 3.3 \checkmark \text{ no units } \checkmark$ (or ecf based on answers to (i) and/or (a))	[2]
(c)		leave experiment longer \checkmark monitor compositions and repeat until constant value \checkmark	[2]
(d)	(i)	more $CH_3COOC_2H_5$ & H_2O / less CH_3COOH & C_2H_5OH ✓ equilibrium \longrightarrow right \checkmark AW	[2]
	(ii)	K _c stays same ✓	[1]
(e)		stays the same/ catalyst does not shift equilibrium position forward & reverse reactions altered by same amount/ equilibrium achieved in less time	[2]
(f)	(i)	equilibrium → left ✓ more reactants / less products ✓	[2]
	(ii)	forward reaction is exothermic \checkmark	[1]
			Total: 16

Question	Expected Answers	Marks	
2 (a)	$H_2O_2 + 2I^- + 2H^+ \longrightarrow I_2 + 2H_2O$ equation includes $H_2O_1I^-$, H^+ as reactants and I_2 as product \checkmark equation balanced \checkmark	[2]	
(b) (i)	Exp 2 has twice [I] as Exp 1 and rate has quadrupled \checkmark , so order = 2 with respect to I \checkmark Exp 3 has twice [H*] as 2 and rate is unchanged \checkmark , so order = 0 with respect to H* \checkmark	[4]	
(i	rate = $k [H_2O_2] [I^-]^2 \checkmark \checkmark 1$ mark for: rate = $k \times concs$ (ecf from (i))	[2]	
	ii) $k = \text{rate}/[H_2O_2][I^-]^2 \checkmark (\text{ecf from (ii)})$ From one of expts, e.g. Exp 1: $k = 1.15 \times 10^{-6}/(0.01)(0.01)^2$ $= 1.15 \checkmark \text{dm}^6 \text{mol}^{-2} \text{s}^{-1} \checkmark$ (ecf from (ii))	[3]	
(c)	rate of reaction	7	
	straight line increasing through 0,0 through 0,0 (H ₂ O ₂ (aq))] /mol dm ⁻³	[2]	
(d) (i	$2H_2O_2 \longrightarrow 2H_2O + O_2 \checkmark$	[1]	
	ii) $1 \text{ dm}^3 \text{ H}_2\text{O}_2 \longrightarrow 20 \text{ dm}^3 \text{ O}_2 \checkmark$ amount of $\text{O}_2 = 20/24 \text{ mol} \checkmark$ concentration of $\text{H}_2\text{O}_2 = 2 \times 20/24 = 1.67 \text{ mol dm}^{-3} \checkmark$	[3]	
		Total: 17	

Question			Expected Answers	Marks
3	(a)	(i)	a proton donor	[1]
		(ii)	partially dissociates 🗸	[1]
		(iii)	pH = -log[H ⁺]	[1]
		(iv)	A solution that minimises changes/resists change in pH after addition of acid/alkali NOT 'maintains constant pH' or 'cancel out'	[1]
	(b)		H ₂ CO ₃ reacts with added alkali / added alkali reacts with H ⁺ / H ⁺ + OH [−] → H ₂ O ✓	
			The base or HCO₃ reacts with added acid ✓	
			$H_2CO_3 + OH^- \longrightarrow HCO_3^- + H_2O \checkmark$	
			HCO3 + H+ → H2CO3 /AW	[4]
ţ			QoWC: equilibrium position moves to counteract change / explanation in terms of le Chatelier's principle 🗸	[1]
	(c)		$K_{a} = \frac{[H^{*}][HCO_{3}(aq)]}{[H_{2}CO_{3}(aq)]} \checkmark$	
			$[H^*] = 10^{-pH} \checkmark = 10^{-7.4} = 3.98 \times 10^{-8} \checkmark$	
			$\frac{[HCO_3^-(aq)]}{[H_2CO_3(aq)]} = \frac{K_0}{[H^*]} = \frac{4.17 \times 10^{-7}}{3.98 \times 10^{-8}} = 10.5 \checkmark$	[4]
-	<u> </u>	·		Total: 13

Que	stion		Expected Answers	Marks
4	(a)	(i)	crude oil ✓	[1]
		(ii)	$C_4H_{10} + 3\frac{1}{2}O_2 \longrightarrow C_4H_2O_3 + 4H_2O$ C_4H_{10} , O_2 & $C_4H_2O_3$	
			all correct and balanced 🗸	[2]
		(iii)	moles butane = 30 × 1 000/24 = 1 250 🗸	
			Mr maleic anhydride = 98 √	
			mass maleic anhydride = moles × M _r = 1 250/1000 × 98 kg	
	·		122.5 kg ✓	[3]
	(b)		molecular formula = C4H6O6 ✓	
			empirical formula = $C_2H_3O_3$ \checkmark (award both marks if only empirical formula is shown)	[2]
	(c)	(i)	HO OH + H₂O	
			ноос соок	[2]
			,	[2]
		(ii)	any chemical that reacts:	
			e.g. metal more reactive than Pb / carbonate / carboxylic acid / alcohol / hydrogen halide ✓	
			observation to match chemical added ✓	
			equation to match chemistry of chemical added; products \checkmark	
			balanced 🗸	[4]
				Total: 14

Downloaded from http://www.thepaperbank.co.uk