

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2815/04

Methods of Analysis and Detection

Friday

23 JANUARY 2004

Afternoon

50 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 50 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAM	FOR EXAMINER'S USE	
Qu.	Max.	Mark
1	9	
2	15	
3	11	
4	10	
TOTAL	45	

Registered Charity Number: 1066969

2

Answer all the questions.

For Examiner's Use

1 This question is about the use of spectroscopy in analysing radiation from space.

Analysis of light from a star in the constellation Orion produced the line spectrum shown below.

frequency/10¹⁴ Hz

a)	Wha	at does the existence of lines tell us about the atoms which produce them?
		[1]
b)	The star	spectral line marked A at 5.68 x 10 ¹⁴ Hz shows the presence of an element in the
	(i)	Explain how electrons in the atoms produce lines such as A in the spectrum.
		[2]
	(ii)	Calculate the energy, in J mol ⁻¹ , of the radiation that produced this line. $h = 6.63 \times 10^{-34} \text{J s}; \ L = 6.02 \times 10^{23} \text{mol}^{-1}$

answer J mol⁻¹ [2]

(c) Careful analysis of the spectrum shows a converging series of lines for this element.

Why do the lines converge?

....

3

For Examiner's Use

Emission spectra have important uses, particularly in quantitative analytical chemistry.
State one example of such use, outlining how the technique used is able to give quantitative results.
[3]
[Total: 9]

4

The composition of a peptide may be identified by breaking it down into individual amino

2

For Examiner's Use

acio	ls an	d then using electrophoresis to analyse the mixture produced.
(a)	Stat	te the reagent and the conditions used to break down peptides into amino acids.
	rea	gent
	con	ditions
		[3]
(b)		diagram below shows the results of electrophoresis on a mixture of amino acids, ${m V}$ and ${m W}$, carried out at pH 7. The amino acids are singly charged.
		+ U V W -
		starting point
	(i)	Identify which amino acid, \mathbf{U} , \mathbf{V} or \mathbf{W} , has the smallest $M_{\rm r}$
	(ii)	The electrophoresis was carried out again, this time at pH 5, and the spot labelled U moved towards the negative electrode.
		Explain why ${\bf U}$ would move in the direction indicated. You may use ${\rm H_2NCHRCOOH}$ as the formula of ${\bf U}.$
		[3]

5

For Examiner's Use

(c)	In this question, one mark is available for the quality of written communication.	
	Describe how the components in a mixture of volatile liquids may be separated and analysed using gas/liquid chromatography. You may use a diagram to help with your description.	
		ļ
	[5]	
	Quality of Written Communication [1]	
(d)	State what is meant by the following terms used in chromatography.	
	(i) R _f value	
	(ii) retention time	
	[1]	
	[Total: 15]	

6

For Examiner's Use

[2]

3 Compound **A** has an M_r of 70 and contains the elements carbon, hydrogen and oxygen only. The mass spectrum shown below was obtained from compound **A**.

(a) (i) The ratio of the M: (M+1) peaks is 52 : 2.3. Determine the number of carbon atoms in compound **A**.

(ii) The M_r of compound **A** is 70. Suggest a molecular formula for compound **A**. [1]

(b) Suggest which fragments have been **lost from the molecular ion** to form the peaks at m/e 55 and m/e 41.

fragment **lost** to give m/e 55

fragment lost to give m/e 41[2]

(c) Suggest a formula for the fragment ion which gives the peak at m/e 41.

.....[1]

For Examiner's Use

(d) Compound A reacts with hydrogen bromide to form compound B by an addition reaction. The mass spectrum of compound B shows an M and an (M+2) peak.

(e) Compound A absorbs in the uv/visible region of the spectrum. Use this, your answer to (a)(ii) and the information in (d) to draw a possible structural formula of the compound.

[1]

(f) Compound A is heated in a sealed container. From amongst the products formed, two gases were isolated each with an M_r of approximately 28.

(i) Predict the identity of the two gases. and [2]

(ii) High resolution mass spectrometry revealed that one of these gases had a molecular ion peak at m/e 28.0312. Use the table of relative isotopic masses to identify this gas. Show your working.

element	relative isotopic mass
hydrogen, ¹ H	1.0078
carbon, ¹² C	12.0000
oxygen, ¹⁶ O	15.9949

[1]

[Total: 11]

8

For Examiner's Use

4 In this question, you will need to use data from the spectra given below to try to identify the compound **D** that produced them.

4

3

2

5

chemical shift/δ

7

6

10

9

8

9

For Examiner's Use

	9
(a)	Compound D has the formula C_xH_yO .
	Use the mass spectrum to deduce the values of x and y , showing how you arrive at your answer.
	[3]
(b)	Use the spectra to identify structural features present in ${\bf D}$, and hence suggest a structural formula for the compound.
	Explain clearly how you make your deductions from the spectral data.
	·

[7]

[Total: 10]