Downloaded from http://www.thepaperbank.co.uk

A2

TRANSITION ELEMENTS

Mark Scheme 2815/6 January 2004 Final Mark Scheme 2815/06 January 2004

1(a) name of metal or compound and its use (3)

examples include

vanadium(V) oxide as a catalyst in the contact process

nickel as a catalyst in hydrogenation of oils

iron as a catalyst in the Haber process

cobalt in stainless steel/ for hardening steel

copper in brass/bronze/coinage metals/electrical wiring

[3]

(b) statement that the ion involved is copper(I) (1)

2Cu⁺ → Cu²⁺ + Cu (1)

in disproportionation the same species is both oxidised and reduced (1)

copper in oxidation state +1 goes to copper in oxidation state +2 and oxidation state 0

[Total:7]

[4]

Final Mark Scheme 2815/06 January 2004

2(a) labels on diagram to show

$$Ni(s)$$
 and $Ni^{2+}(aq)(1)$

salt bridge and suitable circuit (1)

platinum electrode (1)

 I_2 and $I^-(1)$

concentration of 1 mol dm⁻³ for at least one solution/ 298K (1) [5]

(b)(i)
$$0.79V(1)$$

(ii) Ni \rightarrow Ni²⁺ + 2e⁻(1)

$$I_2 + 2e^- \rightarrow 2I^-(1)$$
 [2]

(iii)
$$Ni + I_2 \rightarrow Ni^{2+} + 2I^{-}(1)$$
 [1]

(iv) from nickel towards iodine since nickel half-cell standard electrode potential is more negative (1) [1]

[Total: 10]

Final Mark Scheme		2815/06	January 2004
3(a)	prepare mixtures by mixing stated	l volumes (1)	
	place mixture in colorimeter (1)		
	read absorbance/transmittance (1))	[3]
(b)	straight lines drawn and extrapola	ated to cross (1)	
	volume Ni ²⁺ for maximum absorb	pance = $1.42 \text{ cm}^3 (1)$	
	in complex ratio NH ₃ : Ni ²⁺ = $\frac{8.58}{1.42}$		
	formula is $[Ni(NH_3)_6]^{2+}(1)$		[4]
(c)	blue/ blue-green (1)		
	red end of spectrum absorbed (1)		[2]
			[Total: 9]

Downloaded from http://www.thepaperbank.co.uk

Final Mark Scheme

2815/06

January 2004

4 (a)
$$1s^22s^22p^63s^23p^64s^23d^2/1s^22s^22p^63s^23p^63d^24s^2$$
 (1) $1s^22s^22p^63s^23p^6$ (1) [2]

(b) colour due to energy being absorbed (1)

when electrons are promoted (1)

energy lies within visible part of spectrum/ complementary colour seen

(1)

E = hf(1)

transition metal ions have incomplete d shells (1)

d sub-shell split into 2 energy levels (1)

titanium(IV) has no d electrons (1)

[6 max]

QWC for use of scientific language

account to include at least 2 of electron excitation energy absorption complementary colour d shell/d sub-shell (1)

[Total:9]

[1]

Final M	lark Scherne	2815/06	January 2004
5(a)	Mr of $KCr(SO_4)_2 = 283 (1)$		
	$KCr(SO_4)_2: H_2O =$	$\frac{0.98}{283} : \frac{0.75}{18} (1)$	
	= 0.00346 : 0.0417 =	1:12(1)	
	other valid methods	credited	[3]
(b)(i)	3D diagram to show	octahedral shape (1)	
	bond angle marked a	as 90° (1)	[2]
(ii)	octahedron/ octahed	ral (1)	[1]
(c)(i)	$[\operatorname{Cr}(H_2O)_4\operatorname{Cl}_2]^+(1)$		[1]
(ii)	cis isomer drawn (1)		
	trans isomer drawn (1)	
	correct labels cis and	i trans (1)	[3]
			[Total: 10]