

A2

TRENDS + PATTERNS

Mark Scheme 2815/1 January 2004

Final Mark Scheme

2815/01

January 2004

Question			Expected answers		Additional guidance
1	(a)	(i)	(Enthalpy change of) formation (of magnesium oxide) (1); (Enthalpy change of) atomisation (of magnesium) (1);	3	Allow (enthalpy change of) sublimation (of magnesium)
			First ionisation enthalpy (of magnesium) (1)		Allow first ionisation energy
		(ii)	$Mg^{2+}(g)$ and $O^{2-}(g)$ (1)	1	State symbols essential
		(iii)	Electron being gained is repelled by the negative charge of the ion / aw (1)	1	
	(b)	(i)	Lattice enthalpy = -149 - 736 - 1450 - 248 - 650 - 602 (1); = -3835 (kJ mol ⁻¹) (1)	2	Allow ecf from one error (1)
		(ii)	Lattice enthalpy of barium oxide is less exothermic than that of magnesium oxide / lattice enthalpy is smaller in magnitude / ora (1); Mg ²⁺ has a smaller ionic radius than Ba ²⁺ / Mg ²⁺ has a higher charge density than Ba ²⁺ / ora (1);	3	Not bigger or smaller lattice enthalpy Correct particles must be used e.g. not Mg has a smaller radius
			So stronger attraction between the positive and negative ion (1)		Allow so has stronger ionic bonds
	(c)		High melting point / (very) large lattice enthalpy / aw (1)	1	Not resistant to heat
	(d)	(i)	BaCO ₃ → BaO + CO ₂ (1)	1	State symbols not essential
		(ii)	Decomposition temperature higher for BaCO ₃ / ora (1) Polarising ability of cation decreases from Mg ²⁺ to Ba ²⁺ (1); Polarisation causes distortion of the charge cloud around the carbonate ion / polarisation weakens the covalent bonds within the carbonate ion (1)	3	Particles used must be correct e.g. not Mg is more polarising Allow marks via a diagram
				Total = 15	

Final Mark Scheme

2815/01

January 2004

Question		Expected answers	Marks	Additional guidance
2	(a)	Often are catalysts (1)	1	Allow compounds are often paramagnetic Not metallic properties
	(b) (i)	Tetrahedral / or a clear drawing of a tetrahedral ion (1); Bond angle of 109.5 ± 0.5° (1)	2	Allow square planar (1) with bond angle of 90° (1) Tetrahedral structure must have at least one wedge
	(ii)	Ci ⁻ (1)	1	
	(iii)	(Concentrated) hydrochloric acid / (concentrated) solution of an ionic chloride (1)	1	Allow correct formula
	(iv)	Suitable equation e.g. $[Cu(H_2O)_6]^{2^+} + 4Cl^- \rightarrow [CuCl_4]^{2^-} + 6H_2O$ Or $[Cu(H_2O)_6]^{2^+} + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2^+} + 4H_2O$; Reaction in which a ligand is swapped or displaced by another ligand / aw (1)	7 Total = 7	Not ligand is substituted

Final Mark Scheme

2815/01

January 2004

Question		Expected answers	Marks	Additional guidance
3	(a)	xidation - Oxidation number of oxygen changes from 2 to 0; eduction – oxidation number of oxygen changes from 1 to –2 (1)	2	Allow one mark if all the oxidation numbers for oxygen (and hydrogen) are correct
	(b) (i)	2MnO ₄ ⁻ + 6H ⁺ + 5H ₂ O ₂ → 2Mn ²⁺ + 8H ₂ O + 5O ₂ Correct reactants and products (1); Balancing (1)	2	Ignore electrons for the first mark
	(ii)	Moles of MnO ₄ = $17.5 \times 10^{-3} \times 0.0200 / 3.5 \times 10^{-4}$ (1); Moles of H ₂ O ₂ = 2.5×10^{-4} moles of MnO ₄ / 8.75×10^{-4} (1); Conc of H ₂ O ₂ = $\frac{8.75 \times 10^{-4}}{0.025}$ = 0.0350 (mol dm ⁻³) (1)	3	Allow ecf within question Allow 0.035 Not 0.04 / 0.03
(c)		Aqueous sodium hydroxide / potassium thiocyanate / ammonium thiocyanate (1); Appropriate observation e.g. orange-red / brown / brown-red / foxy-red ppt with NaOH(aq) or (blood) red with KSCN (1)	2	Allow hydroxide (ions) or thiocyanate (ions)
			Total = 9	

Question	Expected answers	Marks	Additional guidance
4	Chemical formula	14	<u> </u>
~	Correct formula of all chlorides (1);	i ' '	Allow AICI3 or
	Number of outer electrons per atom increases /	: }	Al ₂ Cl ₆
	oxidation number increases (1);	 	1
	Structure and bonding		
	NaCl or MgCl ₂ are ionic and AlCl ₃ or SiCl ₄ are covalent	•	Do not award
	(1)		mark if one
	NaCl or MgCl₂ are giant and AlCl₃ or SiCl₄ are simple		bonding or one
	(1)		structure is wrong
	And any two from		
	Correct 'dot-and-cross' diagram for one of the ionic		Do not penalise
	chlorides (1);		incorrect answers
	Correct 'dot-and-cross' diagram for one of the covalent		in these two
	chlorides (1);		marks
	Correct structure/bonding for Al ₂ Cl ₈ showing the dative		
	bonding (1);		
	Drawing of NaCl lattice (1);		
	Action of water		
	Any four from		Allow dissociate
	lonic chlorides dissolve in water / NaCl or MgCl ₂ dissolve		in water
	in water (1):		
	Ionic chlorides give a neutral solution / NaCl gives a	,	
	neutral solution or pH 7 / MgCl ₂ gives a slightly acidic		
	solution or pH 6-7 (1);		Allow polarisation
	Covalent chlorides are hydrolysed / covalent chlorides		of water
	react / SiCl ₄ or AlCl ₃ react or are hydrolysed (1);		molecules by AP
	Covalent chlorides give acidic solutions / SiCl ₄ or AlCl ₃		As alternative to
	give acidic solutions or pH less than 6 (1)		hydrolysis mark
			Allow other
	Suitable equation e.g. SiCl₄ + 2H₂O → SiO₂ + 4HC/		species such as
	(1)		Si(OH)₄
	Melting points		
	NaCl, MgCl₂ or ionic chlorides have electrostatic		
	attraction between ions / attraction between positive and		
	negative ions (1);		Not weak
	AlCl ₃ , SiCl ₄ or simple molecular lattice have van der		covalent bonds
	Waals force of attraction (1):		
	Strong ionic bonds and weak intermolecular forces (1)		
	QWC – one mark for technical terms		
	Award one mark if the candidate has illustrated the		
	answers correctly using at least three of the technical		
2	terms (1) - hydrolysis, hydration, intermolecular, ionic		
	covalent, lattice, electrostatic, van der Waals,		
	polarisation, dative bonding.	<u> </u>	
		Total	

Downloaded	Downloaded from http://www.thepaperbank.co.uk			