Downloaded from http://www.thepaperbank.co.uk

AZ CHAINS, RINS + SPECTROSCEPT

Mark Scheme 2814 January 2004

(e)(i)

no peak at 9.5 - 10.0 / peak with area 1 <

Qu 1 continued overleaf

[1]

Q 1 continued

1 mark for identifying the correct structure

the peak at 1.1 ...

(is in the range 0.7-1.6 so) is due to CH₃/R-CH₃ group(s)

is a triplet / 1:2:1 as it is next to a CH₂ /two protons ✓

is due to six protons/two CH₃ (in the same environment) ✓

the peak at 2.4 ...

(is in the range 2.0 – 2.9 so) is due to the CH_2 /-CO- CH_2 -R group(s) \checkmark is a quartet / 1:3:3:1 as it is next to a CH_3 /three protons \checkmark

is due to four protons/two CH₂ (in the same environment) ✓

the number of peaks ...

(two peaks, so only) two environments/ two types of proton / Ha and Hb on structure /each CH₃CH₂- is identical etc ✓

three environments for methylbutanone so would get 3 peaks/ Ha, Hb, Hc shown on a structure ✓

four environments for for pentan-2-one so would get 4 peaks / Ha, Hb, Hc, Hd shown on a structure ✓

ANY 5 reasoning marks out of 9

max [6]

[Total: 21]

Final Mark Scheme 2814 January 2004

2 (a) carbonyl / ketone ✓ phenol ✓

[2]

(b)(i) C₁₄H₈O₄ 1 for C₁₄... ✓ 1 for ... H₈O₄ ✓

[2]

(ii) moles dissolved = $0.800 \times 0.015 = 0.012$ / conc in gdm⁻³ = $0.015 \times 240 = 3.6(g) \checkmark$

mass dissolved = 0.0120mol x 240 / 3.6gdm⁻³ x 0.800 = 2.88/2.9(g) \checkmark (or ecf)

[2]

(c)

of the car to have

H₂O as product ✓ balanced equation ✓

[3]

(d) C=O / carbonyl ✓ 1680 – 1750 ✓ O-H / hydroxy(l) ✓ 3230 – 3550 ✓

[4]

(e)

[1]

[Total: 14]

3 (a)
$$CH_3CHO + 2[H] \longrightarrow C_2H_5OH$$

where $CH_3CHO \longrightarrow C_2H_5OH$ gets \checkmark
and also 2[H] to give a correct balanced equation \checkmark

(b) (i)

H

O

one mark for each curly arrow

- (iii) electron/lone pair donor
- (iv) nucleophile/hydride is attracted to a positive (charge) centre /δ+ carbon /area of electron deficiency ✓
 (its lone pair of electrons) forms a (covalent/dative) bond ✓
 the double/π electron pair goes to the oxygen atom ... ✓
 ... (causing)the carbonyl/double/π bond to break ✓
 ANY 3 out of 4 marks
- (c) hydrogen has no lone pair

[Total: 10

[

[3

[1

ANY 3 out of 4

4 (a) RCH(NH₂)COOH ✓

[1]

(b)

either -NH₃ ⁺ or -COO ⁻ shown in the right place ✓ rest of the structure correct ✓

[2]

(c) (i) optical (isomerism)

[1]

(ii)

(or shown as zwitterion, or with C7H7)

at least one structure correctly drawn ✓ a correct mirror image ✓

[2]

(d) difference in position of the NH₂ relative to the COOH ✓ an OH group (in G) ✓ extra carbon /longer chain (in G) ✓ extra chiral centre (in G) ✓

[3]

(e)(i)

[1]

(ii) for lengthening the carbon chain / increasing the number of carbon atoms ✓

[1]

(f) (i)

[2]

(ii) a mixture of stereoisomers ... because **G** is made synthetically / not naturally /in the laboratory /the HCN can add above or below etc ✓

[1]

Qu 4 continued overleaf

[2]

[3]

Q 4 continued

4 (g)

(h) (only) one stereoisomer has the right shape / fits the active site etc / is pharmacologically active ✓

the other stereoisomer may have (harmful) side-effects \checkmark

increased dose is needed 🗸

valid reason for increased costs - eg testing of both isomers (NOT just related to increased dosage) ✓

ANY 3 out of 4 marks

[Total 19 Marks]

[7]

[1]

[3]

[1]

condensation involves loss of water / small molecule ✓

correct PE repeat unit (either: {CH₂-CH₂} or {CH₂}) ✓

equation to form PE from ethene showing 'n' monomers to give a polymer using 'n' / with at least 4 carbons extending on <

correct ester link displayed in PET ✓ correct PET repeat unit indicated ✓

equation to form a correct repeat of PET and H₂O, showing at least one of each monomer ✓

Quality of written communication

mark for good organisation and a logical response ... examples are linked to the relevant definitions / the response attempts or implies a comparison

[1]

(b)(i)

heat / reflux ✓

(ii) dilute / aq / named concentration ✓ acid / H⁺/ alkali / OH⁻/ suitable named acid or alkali ✓

acid / 11 / aikaii / O17 / Sultable Haffled acid of aikaii /

(iii) CH₃COOH (if acid hydrolysis in (ii)) / CH₃COO ⁻ (from

alkaline hydrolysis in (ii))

(c)

[2]

[Total: 15]

Final Mark Scheme

2814

January 2004

6 (a) (i) CH₃Cl / CH₃Br ✓

[1]

(ii) AlCl₃ / FeBr₃ etc ✓

[1]

(b)

[1]

(c) stage 2 H₂SO₄ ✓

HNO₃ ✓ 60°C ✓

 $C_6H_5CH_3 + HNO_3 \longrightarrow C_6H_4(CH_3)NO_2 + H_2O \checkmark$

stage 3

tin 🗸

HCI ✓

heat / reflux ✓

 $C_6H_4(CH_3)NO_2 + 6[H] \longrightarrow C_6H_4(CH_3)NH_2 + 2H_2O$ (or with H⁺ as well to give the salt $C_6H_4(CH_3)NH_3^+$) \checkmark

ANY 7 out of 8

max [7]

Quality of Written Communication

mark for technical terms ... answer contains at least two of the following terms:

concentrated/conc (for any acid), nitration, nitrating mixture, electrophilic, substitution, reduction, catalyst (for H₂SO₄ or tin), 2-methylnitrobenzene ✓

[1]

[Total 11 Marks]